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Array processing involves manipulation of signals induced on
various antenna elements. Its capabilities of steering nulls to
reduce cochannel interferences and pointing independent beams
toward various mobiles, as well as its ability to provide estimates
of directions of radiating sources, make it attractive to a mobile
communications system designer. Array processing is expected
to play an important role in fulfilling the increased demands of
various mobile communications services. Part I of this paper
showed how an array could be utilized in different configurations to
improve the performance of mobile communications systems, with
references to various studies where feasibility of an array system
for mobile communications is considered.

This paper provides a comprehensive and detailed treatment
of different beam-forming schemes, adaptive algorithms to adjust
the required weighting on antennas, direction-of-arrival estimation
methods—including their performance comparison—and effects of
errors on the performance of an array system, as well as schemes
to alleviate them. This paper brings together almost all aspects of
array signal processing. It is presented at a level appropriate to
nonexperts in the field and contains a large reference list to probe
further.

Keywords— Beam forming, conjugate gradient method, eigen-
structure methods, ESPRIT, least square algorithm, linear pre-
diction method, maximum entropy, maximum likelihood method,
minimum norm, mobile communications, multipath arrivals, MU-
SIC, MVDR estimator, neural networks, recursive least square
algorithm, weighted subspace fitting.

NOMENCLATURE

by matrix, with its columns being
the steering vectors.
Amplitude of the th source using fre-
quency modulation.
Denotes weights after the th tap in
TDL structure in a beam-space processor.

AIC Akaike’s information criterion.
Blocking matrix or the matrix prefilter for
a narrow-band beam-space processor.

BER Bit error rate.
BPSK Binary phase shift keying.
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constraint matrix.
Speed of propagation of a plane wave
front.

CANAL Concurrent nulling and location.
CDMA Code division multiple access.
CMA Constant modulus algorithm.
CRLB Cramer–Rao lower bound.

Interelement spacing of a linear equis-
paced array.
Message symbol in TDMA system and
message sequence in CDMA system (as-
sociated with theth source).

DOA Direction of arrival.
Expectation operator.
Vector of all zeros except the first ele-
ment, which is equal to unity.

ESPRIT Estimation of signal parameters via rota-
tional invariance technique.

-dimensional vector specifying the fre-
quency response in the look direction.
Center frequency.
Nyquist frequency.

FBW Fractional bandwidth.
FDMA Frequency division multiple access.
FFT Fast Fourier transform.
FINE First principal vector.
FIR Finite impulse response.

Array gain of the optimal processor.
Cross-power spectrum of two broad-band
signals and .
Pseudo-random noise binary sequence
having the values 1 or 1.
Unbiased estimate of the gradient of the
mean squared error or the mean output
power.

GMSK Gaussian minimum shift keying.
GSC Generalized side-lobe canceller.
GSM Global system for mobile communica-

tions.
Transfer function.
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HEOS Highly elliptical orbit satellite.
Identity matrix.
Number of taps in a tapped delay line
structure.
Reflection matrix with all its elements
along the secondary diagonal being equal
to unity and zero elsewhere.
Cumulative mean square error at theth
iteration, cost function.
Number of elements in a subarray.
Covariance matrix of the weights at the

th iteration.
Number of elements in an array.
Natural logarithm of .

LMS Least mean square.
LS Least square.
M Number of directional sources, number of

beams in a beam-space processor.
Misadjustment.
Complex modulating function of theth
source.
Modulating function of the signal at time
instant .
Modulating function of the signal source
at time instant .

MAP Maximum a posteriori.
MDL Minimum description length.
MEM Maximum entropy method.
min-norm Minimum norm.
ML Maximum likelihood.
MLM Maximum likelihood method.
MMSE Minimum mean squared error.
MSE Mean squared error.
MVDR Minimum variance distortionless re-

sponse.
MUSIC Multiple signal classification.

Number of samples.
Number of possible combinations of ele-
ments with lag .
Random noise component on theth el-
ement.

NAME Noise-alone matrix inverse.
Projection operator.
Power estimated by Barrette method as a
function of .
Power estimated by linear prediction
method as a function of.
Power estimated by MEM as a function
of .
Power estimated by minimum norm
method as a function of.
Power estimated by MUSIC method as a
function of .
Power estimated by MVDR method as a
function of .
Output noise power.
Mean output power of the processor for
a given .

Power of the th source as measured at
the reference element.
Power of a directional interference.
Power of the source in the look direction,
referred to as the signal source.
Mean output power of the conventional
processor.
Sampling pulse.

PIC Postbeam-former interference canceller.
QPSK Quadrature phase shift keying.

dimensional vector denoting out-
puts of auxiliary beams of a
beam-space processor.
Array correlation matrix.
Array correlation matrix estimate at time
instant .

th subarray matrix of the forward
method.

th subarray matrix of the backward
method.
Noise-only array correlation matrix.
Reference signal.
th correlation lag.

Position vector of theth element.
-dimensional vector denoting correla-

tion between the desired signal and the
array signal vector.

RLS Recursive least square.
RMS Root mean square.

Steering vector in the look direction.
Steering vector in direction .
Steering vector associated with the direc-
tion or the th source.
Steering vector associated with the direc-
tion .

by matrix denoting the source
correlation.
Power density of broad-band signal .

SMI Sample matrix inversion.
SNR Signal-to-noise ratio.
SPNMI Signal-plus-noise matrix inverse.
STD Standard deviation.

Delay between successive taps of TDL
filter.
Bulk delay.
Steering delay in front of th element to
steer an array in direction.
Steering delay in front of th element to
steer an array in look direction.

TAM Toeplitz approximation method.
TDL Tap delay line.
TDMA Time division multiple access.
TLS Total least square.

Trace of .
Matrix with its – columns being the
eigenvectors corresponding to the–
smallest eigenvalues of .
Matrix with its columns being the
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eigenvectors corresponding to the
largest eigenvalues.
Unit-norm eigenvector corresponding to

.
Column vector of all zeros except one
element, which is equal to one.

ULA Uniformly spaced linear array.
Difference between estimated weights
and the optimal weights at the th
iteration.
Variance of the gradient.
Unit vector in direction .
Matrix prefilter to block the look direc-
tion in a broad-band beam-space proces-
sor.
Weighting on th element for the narrow-
band beam former.
Array weight vector.
Mean of the estimated weights at theth
iteration.
Array weight vector at time instant ,
new weights computed at the th
iteration
Array weights of the conventional beam
former.

weights after the th tap in TDL
structure.
Weights of the optimal beam former.
Weights with minimum mean squared
error.

WSF Weighted subspace fitting.
Total signal induced on theth element
due to all directional sources and
background noise.
Signal induced on theth element due to
the signal sources only.
Array signal vector at time instant.
Array signal vector at time instant.

dimensional signal vector following
matrix prefilter.
Array signal vector at time instantdue
to the signal sources only.
Array receiver vector not containing the
signal at time instant .
Output of a beam former at time.
Output of a beam former when it is
operating with weights .
Modified output of a beam former when
it is operating with weights .
Output of the main beam of a beam-space
processor.
Weighted output of the auxiliary beams
of a beam-space processor.
Desired amplitude in the absence of in-
terference.
Correlation between the reference signal
and the array signals vector.
Output SNR of the optimal processor.

Sampling interval.
Magnitude of the displacement vector.
Forgetting factor.
Complex scalar denoting the correlation
between the signal and an interference.
Correlation between two broad-band sig-
nals and .
Error signal.
Error signal between the reference signal
and modified output.
Change in error signal when array output
is perturbed by a small amount .
Error between the array output and the
reference signal for a given .
Look direction.
Direction of an interference.
Direction of the th source.
Message part of theth source using
frequency modulation.

by diagonal matrix with
being its diagonal entries.

th eigenvalue of the array correlation
matrix.
Maximum eigenvalue of .
th eigenvalue of .

Maximum eigenvalue of .
Constant.
Gradient step size.
Step size at the th iteration.
Scalar quantity, which depends on the
direction of the interference relative to
the signal source and the array geometry.
Correlation function of a broad-band sig-
nal.
Cross-correlation function.

by matrix with being
its columns.
Variance of random noise.
Variance of quantization noise.
Direction of the th source.
Time constant of theth trajectory.
Time taken by a plane wave arriving
from the th source in direction and
measured from the th element to the
reference point.
Time taken by a plane wave arriving from
the th source in direction and
measured from theth element.
Differential delay between elementsand

due to a source in direction.
Complex conjugate.
Transpose of a vector or matrix.
Complex conjugate transpose of a vector
or matrix.

I. INTRODUCTION

The demand for wireless mobile communications ser-
vices is growing at an explosive rate, with the anticipation
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that communication to a mobile device anywhere on the
globe at all times will be available in the near future. An
array of antennas mounted on vehicles, ships, aircraft, satel-
lites, and base stations is expected to play an important role
in fulfilling these services’ increased demand for channels
and in realizing the dream that a portable communication
device the size of a wristwatch will be available at an
affordable cost for such services.

Part I of this paper showed how an antenna array could be
used in various configurations to improve the performance
of mobile communications systems, with references to the-
oretical analyses, computer simulations, and experimental
system developments.

Array signal processing involves the manipulation of
signals induced on the elements of an array. The wide-
spread interest in the subject area has been maintained
over decades due to its applicability to many walks of life.
The first issue of IEEE TRANSACTIONS ONANTENNAS AND

PROPAGATION, published in 1964 [1], has been followed by
many special issues of various journals [2]–[6], a number
of books [7]–[12], a selected bibliography [13], and a vast
amount of specialized research papers. Some of the general
papers that discuss various issues include [14]–[31].

This paper provides a comprehensive review of various
beam-forming schemes, adaptive algorithms to adjust the
required weighting on antennas, DOA estimation methods,
and array-system sensitivity to parameter perturbations. As
array signal processing has applications in many other
disciplines, this paper aims to provide a complete treatment
of the subject area by extending coverage to topics that
might not be directly relevant to mobile communications.
This paper, however, provides references where beam-
forming and DOA estimation methods have been suggested
for mobile communications systems.

In Section II, a signal model useful for array processing
is presented along with various beam-forming schemes,
including descriptions of conventional delay and sum beam
formers, null steering, constrained beam forming and op-
timization using a reference signal, beam-space process-
ing, broad-band array processing in time and frequency
domains, digital beam forming, and eigenstructure meth-
ods. Section III describes adaptive algorithms to adjust
the weights of an array. These algorithms include SMI,
unconstrained as well as constrained LMS, normalized
LMS, structured gradient, RLS, CMA, conjugate gradient
method, and neural-network approach to beam forming.
Some discussion on implementation issues, convergence
characteristics of adaptive algorithms, and signal sensitivity
of the LMS algorithm is also provided in this section.

Section IV describes various DOA estimation methods,
compares their performance, and analyzes their sensitiv-
ity. These methods include spectral estimation, MVDR
estimator, linear prediction, maximum entropy, ML, var-
ious eigenstructure methods—including many versions of
MUSIC algorithms—min-norm, CLOSEST, ESPRIT, and
WSF. This section also contains a discussion on various
preprocessing and number-of-source estimation methods.

Section V discusses the effect of errors and perturbations
on the performance of the array processing schemes. A
signal model applicable to multipath situations is discussed,
and it is pointed out how multipath degrades the per-
formance of an array processing system. Various cures
for multipath degradation are highlighted in this section,
which also presents a discussion on look direction and
steering vector errors, element failure and element position
errors, and weight errors. References to many robust beam-
forming schemes are also included in this section. Section
VI concludes this paper.

II. BEAM FORMING

In this section, various beam-forming methods are dis-
cussed in detail. First, notation, terminology, and a signal
model useful for this purpose are introduced.

A. Terminology and Signal Model

Consider an array of omnidirectional elements im-
mersed in a homogeneous media in the far field of
uncorrelated sinusoidal point sources of frequency. Let
the origin of the coordinate system be taken as the time
reference, as shown in Fig. 1. Thus, the time taken by a
plane wave arriving from theth source in direction
and measured from theth element to the origin is given by

(1)

where is the position vector of theth element,
is the unit vector in direction is the speed of
propagation of the plane wave front, andrepresents the
inner product. For a linear array of equispaced elements
with element spacing aligned with the -axis such that
the first element is situated at the origin, it becomes

(2)

The signal induced on the reference element due to the
th source is normally expressed in complex notation as

(3)

with denoting the complex modulating function. The
structure of the modulating function reflects the particular
modulation used in a communications system. For example,
for an FDMA system, it is a frequency-modulated signal
given by , with denoting the amplitude
and denoting the message. For a TDMA system, it is
given by

(4)

where is the sampling pulse, the amplitude
denotes the message symbol, andis the sampling interval.
For a CDMA system, is given by

(5)
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Fig. 1. Definition of coordinate system.

where denotes the message sequence and is a
pseudo-random noise binary sequence having the values

or [32].
In general, the modulating function is normally modeled

as a complex low-pass process with zero mean and variance
equal to the source power, as measured at the reference
element.

Assuming that the wavefront on theth elements arrives
seconds before it arrives at the reference element,

the signal induced on theth element due to theth source
can be expressed as

(6)

The expression is based upon the narrow-band assump-
tion for array signal processing, which assumes that the
bandwidth of the signal is narrow enough and that the array
dimensions are small enough for the modulating function
to stay almost constant during seconds, that is,
the approximation holds.

Let denote the total signal induced due to all di-
rectional sources and background noise on theth element.
Then it is given by

(7)

where is a random noise component on theth
element, which includes background noise and electronic
noise generated in theth channel. It is assumed to be
temporally white with zero mean and variance equal to.

It should be noted that if the elements were not omnidi-
rectional, then the signal induced on each element due to a
source is scaled by an amount equal to the response of the
element under consideration in the direction of the source.

Consider a narrow-band beam former, shown in Fig. 2,
where signals from each element are multiplied by a
complex weight and summed to form the array output. The
figure does not show components such as preamplifiers,

Fig. 2. Narrow-band beam-former structure.

bandpass filters, and so on. It follows from the figure that
an expression for the array output is given by

(8)

where denotes the complex conjugate.
Denoting the weights of the beam former as

(9)

and signals induced on all elements as

(10)

the output of the beam former becomes

(11)

where superscripts and , respectively, denote the trans-
pose and complex conjugate transpose of a vector or matrix.
Throughout this paper, and are referred to as the
array weight vector and the array signal vector, respectively.

If the components of can be modeled as zero mean
stationary processes, then for a given, the mean output
power of the processor is given by

(12)

where denotes the expectation operator andis the
array correlation matrix defined by

(13)

Elements of this matrix denote the correlation between
various elements. For example, denotes the correlation
between the th and the th element of the array. Denote
the steering vector associated with the direction or
the th source by an -dimensional complex vector as

(14)
Algebraic manipulation using (7), (10), and (13) leads to
the following expression for

(15)
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where is an identity matrix and denotes the power of
the th source measured at one of the elements of the array.
It should be noted that is the variance of the complex
modulating function when it is modeled as a zero
mean low-pass random process, as mentioned previously.

Using matrix notation, the correlation matrix may be
expressed in the following compact form:

(16)

where columns of the by matrix are made up of
steering vectors, i.e.,

(17)

and by matrix denotes the source correlation. For
uncorrelated sources, it is a diagonal matrix with

(18)

Sometimes, it is useful to expressin terms of its eigen-
values and their associated eigenvectors. The eigenvalues of

can be divided into two sets when the environment con-
sists of uncorrelated directional sources and uncorrelated
white noise.

The eigenvalues contained in one set are of equal values.
Their value does not depend upon the directional sources
and is equal to the variance of the white noise. The
eigenvalues contained in the second set are a function of
the parameters of the directional sources, and their number
is equal to the number of these sources. Each eigenvalue of
this set is associated with a directional source, and its value
changes with the change in the source power of this source.
The eigenvalues of this set are bigger than those associated
with white noise. Sometimes, these eigenvalues are referred
to as the signal eigenvalues, and the others belonging to the
first set are referred to as the noise eigenvalues. Thus, the

of an array of elements immersed in directional
sources and the white noise has signal eigenvalues and

– noise eigenvalues.
Denoting the eigenvalues of in descending order

by and their corresponding unit-norm eigen-
vectors by , the matrix takes the following
form:

(19)

with a diagonal matrix

(20)

and

(21)

This representation sometimes is referred to as the spec-
tral decomposition of . Using the fact that the eigenvectors

form an orthonormal set, this leads to the following expres-
sion for

(22)

There are many schemes to select the weights of the beam
former depicted in Fig. 2, each with its own characteristics
and limitations. Some of these are now discussed.

B. Conventional Beam Former

A conventional beam former is a simple beam former,
sometimes known as the delay-and-sum beam former, with
all its weights of equal magnitudes. The phases are selected
to steer the array in a particular direction , known
as the look direction. With denoting the steering vector
in the look direction, the array weights are given by

(23)

The array with these weights has unity response in the look
direction, that is, the mean output power of the processor
due to a source in the look direction is the same as the
source power. This may be understood as follows.

Assume that there is a source of power in the look
direction, hereafter referred to as the signal source, with

denoting its modulating function. The signal induced
on the th element due to this source only is given by

(24)

Thus, in vector notation, using a steering vector to denote
relevant phases, the array signal vector due to the look
direction signal becomes

(25)

and the output of the array with weight vector becomes

(26)

yielding the mean output power of the processor

(27)

Thus, the mean output power of the conventional beam
former steered in the look direction is equal to the power
of the source in the look direction. The process is similar to
steering the array mechanically in the look direction except
that it is done electronically by adjusting the phases. This is
also referred to as electronic steering, and phase shifters are
used to adjust the required phases. It should be noted that
the aperture of an electronically steered array is different
from that of a mechanically steered array.

The concept of a delay-and-sum beam former can be
further understood with Fig. 3, which shows an array with
two elements separated by distance. Assume that a plane
wave arriving from direction induces voltage on the
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Fig. 3. Two-element delay-and-sum beam-former structure.

first element. As the wave arrives at the second element
seconds later, with

(28)

the induced voltage on the second element equals .
If the voltage induced at the first element is delayed by
an amount equal to , producing voltage , and no
delay is provided at the second element, then both voltage
waveforms appear in phase and the output of the beam
former is produced by summing these waveforms. A scaling
of each waveform by 0.5 provides the gain in direction
equal to unity.

In an environment consisting of only uncorrelated noise
and no directional interferences, this beam former provides
maximum SNR. For uncorrelated noise, the is given by

(29)

and the output noise power of the beam former

(30)

It shows that the noise power at the array output is
times less than that present on each element. Thus,

the processor with unity gain in the signal direction has
reduced the uncorrelated noise by, yielding the output
SNR . As the input SNR is this provides
an array gain, which is defined as the ratio of the output
SNR to the input SNR, equal to the number of elements
in the array.

Though this beam former provides maximum output SNR
when there is no directional jammer operating at the same
frequency, it is not effective in the presence of directional
jammers, intentional or unintentional. The response of the
processor toward a source in direction is given by

(31)

where denotes the steering vector in direction .
In the next section, a beam former that puts nulls in the
directions of interferences is described.

C. Null-Steering Beam Former

A null-steering beam former is used to cancel a plane
wave arriving from a known direction and thus produces a
null in the response pattern in the DOA of the plane wave.
One of the earliest schemes, referred to as DICANNE [33],
[34], achieves this by estimating the signal arriving from
a known direction by steering a conventional beam in the
direction of the source and then subtracting the output of
this from each element. An estimate of the signal is made
by delay-and-sum beam forming using shift registers to
provide the required delay at each element such that the
signal arriving from the beam-steering direction appears in
phase after the delay. Then these waveforms are summed
with equal weighting. This signal is then subtracted from
each element after the delay. The process is very effective
for canceling strong interference and could be repeated for
multiple interference cancellation.

Though the process of subtracting the estimated in-
terference using a delay-and-sum beam former used by
DICANNE scheme is easy to implement for single inter-
ference, it becomes cumbersome as the number of inter-
ferences grows. A beam with unity response in the desired
direction and nulls in interference directions may be formed
by estimating the weights of a beam former, shown in
Fig. 2, using suitable constraints [22], [34]. Assume that
is the steering vector in the direction where unity response
is required and that are steering vectors
associated with directions where nulls are required.
The desired weight vector is the solution of following
simultaneous equations:

(32)

(33)

Using matrix notation, this becomes

(34)
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where is a matrix with its columns being the steering
vectors associated with all directional sources, including
the look direction, that is

(35)

and is a vector of all zeros except the first element,
which is one, that is

(36)

For is a square matrix. Assuming that the
inverse of exists, which requires that all steering vectors
are linearly independent [35], the solution for the weight
vector is given by

(37)

In case the steering vectors are not linearly independent,
is not invertible, and its pseudo inverse can be used in

its place.
It follows from this equation that due to the structure of

the vector , the first row of the inverse of matrix forms
the weight vector. Thus, the weights selected as the first
row of the inverse of matrix have the desired properties
of unity response in the look direction and nulls in the
directions of interferences.

When the number of required nulls is less than
is not a square matrix. A suitable estimate of weights may
be produced using

(38)

Though the beam pattern produced by this beam former
has nulls in the directions of interferences, it is not designed
to minimize the uncorrelated noise at the array output. It is
possible to achieve this by selecting weights that minimize
the mean output power subject to the above constraints [36].

An application of a null-steering scheme for detecting an
amplitude modulated signal by placing nulls in the known
directions of interferences is described in [37], which is
able to cancel a strong jammer in a mobile communications
system. The use of a null-steering scheme for a transmitting
array employed at a base station, discussed in [38], min-
imizes the interferences toward other cochannel mobiles.
A performance analysis of a null-steering algorithm is
presented in [39].

D. Optimal Beam Forming

The null-steering scheme described in the previous sec-
tion requires knowledge of the directions of interference
sources, and the beam former using the weights estimated
by this scheme does not maximize the output SNR. The
optimal beam-forming method described in this section
overcomes these limitations.

Let an -dimensional complex vector represent the
weights of the beam former shown in Fig. 2, which maxi-
mizes the output SNR. For an array that is not constrained,
an expression for is given by [17], [24], [40], [41]

(39)

where is the array correlation matrix of the noise alone,
that is, it does not contain any signal arriving from the
look direction , and is a constant. For an array
constrained to have a unit response in the look direction,
this constant becomes

(40)

leading to the following expression for the weight vector:

(41)

As the weights are computed using NAME, the processor
with these weights is referred to as the NAME processor
[42]. It is also known as the ML filter [43], as it finds the
ML estimate of the power of the signal source, assuming
all sources as interferences. It should be notedmay not
be invertible when the background noise is very small. In
that case, it becomes a rank deficient matrix.

In practice, when the estimate of the noise-alone matrix
is not available, the total (signal plus noise) is used to
estimate the weights and the processor is referred to as the
SPNMI processor. An expression for the weights for this
case is given by

(42)

These weights are the solution of the following optimiza-
tion problem:

minimize

subject to (43)

Thus, the processor weights are selected by minimizing
the mean output power of the processor while maintaining
unity response in the look direction. The constraint ensures
that the signal passes through the processor undistorted.
Therefore, the output signal power is the same as the
look-direction source power. The minimization process
then minimizes the total noise, including interferences
and uncorrelated noise. Minimizing the total output noise
while keeping the output signal constant is the same as
maximizing the output SNR.

It should be noted that the weights of the NAMI processor
and the SPNAMI processor are identical, and in the absence
of errors, the processor performs identically in both cases.
This fact can be proved as follows.

The Matrix Inversion Lemma for an invertible matrix
and a vector states that

(44)

Since

(45)

it follows from the Matrix Inversion Lemma that

(46)
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A substitution for in (42) and algebraic manipulation
leads to the expression for weights given by (41), showing
that the two expressions are identical.

The processor with these weights is referred to as the
optimal processor. The output SNR of the optimal
processor is given by [29]

(47)

For a special case of the noise environment when no
direction interference is present, a simple calculation yields

(48)

Thus, the weights of the optimal processor in the absence
of errors are the same as those of the conventional proces-
sor, implying that the conventional processor is the optimal
processor for this case. The output SNR and the array gain

of the optimal processor for this case are, respectively,
given by

(49)

and

(50)

For the case of one-directional interference of power,
the expression for the output SNR becomes

(51)

and the array gain is given by

(52)

where

(53)

is a scalar quantity and depends upon the direction of
the interference relative to the signal source and the ar-
ray geometry [29]. It follows from (23) and (53) after
rearrangement that

(54)

Thus, this parameter is characterized by the weights of
the conventional processor. As this parameter characterizes
the performance of the optimal processor, it implies that
the performance of the optimal processor in terms of its
interference cancellation capability depends to a certain
extent upon the response of the conventional processor to
the interference. This fact has been further highlighted in
[44] and [45].

An interesting special case is one where the interference
is much stronger compared to the background noise,

. For this case, these expressions may be approximated as

(55)

and

(56)

When interference is away from the main lobe of the
conventional processor , it follows that the output
SNR of the optimal processor in the presence of a strong in-
terference is the same as that of the conventional processor
in the absence of interference, implying that the processor
has almost completely canceled the interference, yielding a
very large array gain.

The performance of the processor in terms of its output
SNR and the array gain is not affected by the look-direction
constraint, as it only scales the weights. Therefore, the
treatment presented above is valid for the unconstrained
processor.

For the optimal beam former to operate as described
above and to maximize the SNR by canceling interferences,
the number of interferences must be less than or equal to

, as an array with elements has degrees
of freedom and one has been utilized by the constraint
in the look direction. This may not be true in a mobile
communications environment due to existence of multipath
arrivals, and the array beam former may not be able to
achieve the maximization of the output SNR by suppressing
every interference. As argued in [46], however, the beam
former does not have to suppress interferences to a great
extent and cause a vast increase in the output SNR to
improve the performance of a mobile radio system. An
increase of a few decibels in the output SNR can make
a large increase in the channel capacity of the system
possible.

In mobile communications literature, the optimal beam
former is often referred to as the optimal combiner. Dis-
cussion on the use of the optimal combiner to cancel
interferences and to improve the performance of mobile
communications systems can be found in [46]–[49].

It should be noted that the optimal beam former described
in this section, also known as the MVDR beam former, does
not require the knowledge of the directions and power levels
of the interferences as well as the level of the background
noise power to maximize the output SNR. It requires only
the direction of the desired signal. In the next section,
a processor is described that requires a reference signal
instead of the desired signal direction.

E. Optimization Using Reference Signal

A narrow-band beam-forming structure that employs a
reference signal [24], [27], [28], [50]–[52] to estimate the
weights of the beam former is shown in Fig. 4. The array
output is subtracted from an available reference signal
to generate an error signal , which is
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Fig. 4. Structure of narrow-band beam former using a reference signal.

used to control the weights. Weights are adjusted such that
the MSE between the array output and the reference signal
is minimized. The MSE is given by

MSE

(57)

where

(58)

is the correlation between the reference signal and the array
signals vector .

The MSE surface is a quadratic function of and is
minimized by setting its gradient with respect toequal
to zero, yielding the well-known Wiener–Hoff equation for
the optimal weight vector

(59)

The MMSE of the processor, also known as the Wiener
filter, using these weights is given by

MMSE (60)

The scheme may be employed to acquire a weak signal
in the presence of a strong jammer, as discussed in [50],
by setting the reference signal to zero and initializing the
weights to provide an omnidirectional pattern. The process
starts to cancel strong interferences first and the weak signal
later. Thus, intuitively, there is expected to be a time when

the output would consist of the signal that has not been
canceled but strong interferences have been reduced.

When an adaptive scheme (discussed in Section III-B)
is used to estimate , the strong jammer gets canceled
first as the weights are adjusted to put a null in that direction
to leave signal-to-jammer ratio sufficient for acquisition.

Arrays using reference signals equal to zero to adjust
weights are referred to as power-inversion adaptive arrays
[53]. The MSE minimization scheme (the Wiener filter) is
a closed-loop method compared to the open-loop scheme
of MVDR (the ML filter) described in the previous section.
In general, the Wiener filter provides higher output SNR
compared to the ML filter in the presence of a weak signal
source. As the input signal power becomes large compared
to the background noise, the two processors give almost the
same results [54]. This result is supported by a simulation
study for a two-vehicle mobile communications situation in
[55]. The increased SNR by the Wiener filter is achieved at
the cost of signal distortion caused by the filter. It should
be noted that the optimal beam former does not distort the
signal.

The required reference signal for the Wiener filter may
be generated in a number of ways, depending upon the
application. In digital mobile communications, a synchro-
nization signal may be used for initial weight estimation,
followed by the use of detected signal as a reference signal.
In systems using a TDMA scheme, a sequence that is user
specific may be a part of every frame for this purpose [56].
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The use of a known symbol in every frame has also been
suggested [57]. In other situations, the use of an antenna
for this purpose has been examined to show the suitability
to provide a reference signal [57].

Studies of mobile communications systems using ref-
erence signals to estimate array weights have also been
reported in [58]–[60].

F. Beam-Space Processing

In contrast to element-space processing, where signals
derived from each element are weighted and summed to
produce the array output, beam-space processing is a two-
stage scheme where the first stage takes the array signals
as input and produces a set of multiple outputs, which are
then weighted and combined to produce the array output.
These multiple outputs may be thought of as the output
of multiple beams. The processing done at the first stage
is by fixed weighting of the array signals and amounts
to produce multiple beams steered in different directions.
These weights are normally not adaptive, that is, they are
not adjusted during adaption cycle. The weights applied
to different beam outputs to produce the array outputs are
optimized to meet a specific optimization criteria and are
adjusted during the adaption cycle.

In general, for an -element array, a beam-space proces-
sor consists of a main beam steered in the signal direction
and a set of not more than secondary beams. The
weighted output of the secondary beams is subtracted from
the main beam. The weights are adjusted to produce an
estimate of the interference present in the main beam.
The subtraction process then removes this interference.
The secondary beams, also known as auxiliary beams, are
designed such that they do not contain the desired signal
from the look direction to avoid the signal cancellation
in the subtraction process. A general structure of such
a processor is shown in Fig. 5. Beam-space processors
have been studied under many different names, including
Howells–Applebaum array [24], [51], [61], GSC [62], [63],
partitioned processor [64], [65], partially adaptive arrays
[66]–[72], PIC [73]–[77], adaptive-adaptive arrays [78], and
multiple-beam antennas [79]–[81].

The pattern of the main beam is normally referred to
as the quiescent pattern, and is chosen such that it has a
desired shape. For a linear array of equispaced elements
with equal weighting, the quiescent pattern has the shape
of , with being the number of elements in
the array, whereas for Chebyshev weighting (the weighting
dependent upon the coefficients of the Chebyshev poly-
nomial), the pattern has equal side-lobe levels [82]. The
pattern of the main beam may be adjusted by various forms
of constraints [51] and pattern synthesis techniques, which
are discussed in [83]–[87] and the references therein.

There are many schemes to generate the outputs of aux-
iliary beams such that no signal from the look direction is
contained in them, that is, the beams have nulls in the look
direction. In its simplest form, this can be accomplished by
subtracting the array signals from presteered adjacent pairs
[26], [88]. This relies on the fact that the component of the

Fig. 5. Structure of a general beam-space processor.

array signals induced from a source in the look direction is
identical after the presteering, and this gets canceled in the
subtraction process from the adjacent pairs. The process can
be generalized to produce beams from -element
array signals using a matrix such that

(61)

where dimensional vector denotes the outputs of
beams and the matrix , referred to as the blocking

matrix or the matrix prefilter, has the property that its
columns are linearly independent and that the sum of the
elements of each column equals zero, implying that
beams are independent and have nulls in the look direction.
For an array that is not presteered, the matrix needs to
satisfy

(62)

where is the steering vector associated with the look
direction.

It is assumed in the above discussion that ,
implying that the number of beams is less than or equal
to the number of elements in the array. When the number
of beams is equal to the number of elements in the array,
the processing in the beam space has not reduced the degree
of freedom of the array, that is, its null-forming capability
has not been reduced. In this sense, these arrays are fully
adaptive and have the same capabilities as those of the array
using element-space processing. In fact, in the absence of
errors, both processing schemes produce identical results.
On the other hand, when the number of beams is less
than the number of elements, the arrays are referred to
as partially adaptive. The null-steering capabilities of these
arrays have reduced to that equal to the number of auxiliary
beams. When adaptive schemes are used to estimate the
weights, the convergence is generally faster for these arrays.
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The MSE for these arrays, however, is also high compared
to that of the fully adaptive arrays [89].

These arrays are useful in situations where the number
of interferences is much less than the number of elements.
They offer a computational advantage over element-space
processing, as one needs only to adjust weights
compared to weights for the element-space case with

. Moreover, beam-space processing requires less
computation than the element-space case to calculate the
weights in general, as it solves an unconstrained opti-
mization compared to the constrained optimization prob-
lem solved in the later case. It should be noted that for
the element-space processing case, the constraints on the
weights are imposed to prevent the signal arriving from the
look direction from being distorted and to make the array
more robust against errors. For the beam-space case, these
are transferred to the main beam, leaving the adjustable
weights free from constraints.

A performance comparison of an element-space proces-
sor and a beam-space processor for the case of a single
interference case is presented in [90]. The beam-space
processor considered is a single auxiliary beam processor,
referred to as the PIC processor, which is useful for
canceling single interference only. The study shows that
in the absence of errors, both processors produce identical
results, whereas in the presence of look-direction errors, the
beam-space processor produces superior performance. The
situation arises when the known direction of the signal is
different from the actual direction.

The weights of the processor are constrained with the
knowledge of the look direction. When the actual signal
direction is different from the one that is used to constrain
weights, the element-space processor cancels this signal as
if it was an interference close to the look direction. The
beam-space processor, on the other hand, is designed to
have the main beam steered in the known look direction,
and the auxiliary beams are formed to have null in this
direction. The response of the main beam does not alter
much away from the look direction, and thus the signal
level in the main beam is not affected. Similarly, when
a null of the auxiliary beams is placed in the known
look direction, a very small amount of the signal leaks
in the auxiliary beam due to a source very close to the
null. Thus, the subtraction process does not affect the
signal level in the main beam, yielding a very small
signal cancellation in beam-space processing compared to
element-space processing. For details of the effect of other
errors on beam-space processors, particularly GSC, see, for
example, [91].

The auxiliary beam-forming techniques other than the use
of a blocking matrix (described above) includes formation
of orthogonal beams and formation of beams in
the direction of interferences if known. The beams are
referred to as orthogonal beams to imply that the weight
vectors used to form beams are orthogonal, that is, their dot
product is equal to zero. The eigenvectors oftaken as
weights to generate auxiliary beams fall into this category.
In situations where the DOA’s of interferences are known,

the formation of beams pointed in these directions may lead
to more efficient interference cancellation [78], [92].

The auxiliary beam outputs are weighted and summed,
and the result is subtracted from the main beam output to
cancel the unwanted interference present in the main beam.
The weights are adjusted to cancel the maximum possible
interference. This is normally done by minimizing the total
mean output power after subtraction by solving the uncon-
strained optimization problem, and leads to maximization
of the output SNR in the absence of the desired signal
in auxiliary channels. The presence of the signal in these
channels causes signal cancellation from the main beam,
along with interference cancellation. A detailed discussion
on the principles of signal cancellation in general and some
possible cures is given in [28], [52], and [93].

Use of multiple-beam array-processing techniques for
mobile communications has been reported in various studies
[94]–[98], including development of a 16-element array
system using digital hardware to study its feasibility [99].

G. Broad-Band Beam Forming

The beam-former structure of Fig. 2 discussed earlier is
for narrow-band signals. As the signal bandwidth increases,
the performance of the beam former using this structure
starts to deteriorate [100]. For processing broad-band sig-
nals, a TDL structure, shown in Fig. 6, is normally used
[100]–[108]. A lattice structure consisting of a cascade of

simple lattice filters sometimes is also used [109]–[113],
offering some processing advantages.

The steering delays in front of each element in Fig. 6
are pure time delays and are used to steer the array in a
given look direction . If denotes the time
taken by the plane wave arriving from direction
and measured from the reference point to theth element,
then the steering delay may be selected using

(63)

where is a bulk delay such that .
If denote the signal induced, on an element present

at the center of the coordinate system, due to a broad-band
source of power density then the output of theth
sensor pre-steered in , is given by

(64)

For a source in , it becomes

(65)

yielding identical waveforms after pre-steering delays.
The TDL structure shown in the figure following the

steering delay on each channel is a FIR filter. The co-
efficients of these filters are constrained to specify the
frequency response in the look direction. It should be noted
that these coefficients are real compared to the complex
weights of the narrow-band processor.

Let , defined by

(66)
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Fig. 6. Broad-band beam-former structure using TDL filter.

denote coefficients of the filter structure with
denoting the coefficients after the th tap. The
mean out power of the beam former for a givenis given
by

(67)

where the -dimensional real matrix denotes
the array correlation matrix, with its elements representing
the correlation between various tap outputs. The correlation
between the outputs of the th tap on the th channel
and the th tap on the th channel is given by

(68)

with denoting the correlation function

(69)

It is related to the spectrum of the signal by the Fourier
transform, that is

(70)

Thus, from the knowledge of the spectra of sources and
their DOA’s, the correlation matrix may be calculated. In
practice, this can also be estimated by measuring signals at
the output of various taps.

In situations where one is interested in finding coeffi-
cients such that the beam former cancels the directional
interferences and has the specified response in the look
direction, the following beam-forming problem is normally
considered:

minimize (71)

subject to (72)
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Fig. 7. Structure of partitioned realization of the broad-band beam former.

where is a -dimensional vector that specifies the fre-
quency response in the look direction andis an
constraint matrix. For a point constraint in the look direction

(73)

with denoting the -dimensional vector of 1s. Let
denote the solution of the above problem. It is given by
[25]

(74)

The point-constraint minimization problem specifies
constraints on the weights such that the sum ofweights
on all the channels before theth delay is equal to . For
all pass frequency responses in the look direction, all but
one are selected to be equal to zero. For

close to is taken to be unity. Thus, the
constraints specify that the sum of the weights across the
array is zero except for one near the middle of the filter,
which is equal to unity.

The implication of these constraints is that the array
pattern has a unity response in the look direction. This pat-
tern can be broadened by specifying additional constraints,
such as derivative constraints [114]–[116], along with the
constraints discussed above. The derivative constraints set
the derivatives of the power pattern with respect to
and equal to zero in the look direction. The higher the
order of derivatives, that is, the first order, second order,
etc., the broader the beam in the look direction normally
becomes. A broader beam is useful when the actual signal
direction and the known direction of the signal is not
precisely the same. In such situations the processor with the

point constraint in the known direction of the signal would
cancel the desired signal as if it were an interference. The
other directional constraints to improve the performance
of the beam former in the presence of the look-directional
constraints include multiple linear constraints [117], [118]
and inequality constraints [119]–[121].

A set of nondirectional constraints to improve the per-
formance of the beam former under look-direction errors
is discussed in [122]. These are referred to as correlation
constraints, which use the known characteristics of the
desired signal to estimate an -dimensional correlation
vector between the desired signal and the array signal
vector. The beam-forming problem using these constraints
becomes

minimize (75)

subject to (76)

where is a scalar constant that specifies the correlation
between the desired signal and the array output.

Application of broad-band beam-forming structures using
TDL filters to mobile communications has been considered
in [56] and [123]–[125] to overcome multipath fading and
large delay spread in a TDMA as well as a CDMA system.

H. Partitioned Realization

The broad-band beam-former structure shown in Fig. 6
is sometimes referred to as an element-space processor
or direct form of realization, compared to a beam-space
processor or partitioned form of realization, as shown in
Fig. 7. The structure shown in Fig. 7 is discussed below
for a point constraint, that is, the response is constrained to
be unity in the look direction. A discussion of partitioned
realization for derivative constraints may be found in [126].

The steering delays are used to align the waveform
arriving from the look direction, as discussed. The array
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signals after the steering delays are passed through two
sections. The top section consists of a broad-band conven-
tional beam with required frequency response obtained by
selecting the coefficients of the FIR filter. Signals from all
of the channels are equally weighted and summed. For this
realization to be equivalent to the direct form of realization,
all the weights need to be equal to , and the filter
coefficients need to be specified as
before. Furthermore, the output of the upper section is given
by

(77)

with

(78)

The matrix prefilter shown in the lower section is de-
signed to block the signal arriving from the look direction.
Since these signal waveforms after the steering delays are
alike, it can be achieved by selecting the matrix such
that the sum of each of its rows is equal to zero. For the
partitioned processor to have the same degree of freedom
as that of the direct form, the rows of the matrix
need to be linearly independent. The output after the
matrix prefilter is an -dimensional vector given by

(79)

and can be thought of as the outputs of beams, which
are then shaped by the coefficients of the FIR filter of each
TDL section. Let an -dimensional vector denote
these coefficients before theth delay. The output of the
lower filter is then given by

(80)

These coefficients are selected by minimizing the mean
output of the processor, that is

minimize (81)

The performance of the broad-band arrays as a function
of the number of various parameters, such as the number
of taps, tap spacing, array geometry, array aperture, and
signal bandwidth, has been considered in the literature
[101]–[108] to understand their influence on the behavior
of the arrays. An analysis [101] of broad-band arrays using
eigenvalues of indicates that the product of the array
aperture and the FBW of the signal is an important param-
eter of the broad-band array in determining its performance.
The FBW is defined as the ratio of the bandwidth to
the center frequency of the signal. It is shown that the
number of taps required on each element depends upon this
parameter as well as on the shape of the array, with more
taps needed for a complex shape. A study [102], [103] of
the SNR as a function of intertap spacing indicates that
there is a range of intertap spacing that yields close to

the maximum attainable SNR and depends upon the FBW
of the signal. This range includes a quarter-wavelength
spacing at the center frequency. The quarter-wavelength
spacing produces a 90phase shift at and is equal to

. By measuring the tap spacing as a multiple of this
delay, it is indicated that the intertap spacing with multiple
around FBW yields close to the highest attainable SNR.
With the multiple between FBW to FBW, one needs
a larger number of taps for an equivalent performance.

A study of the jamming rejection capability [104] and
the tracking performance of the array in a nonstationary
environment [105] also indicates that when tap spacing is
measured in terms of the center frequency of the signal, the
best performance is achieved when the spacing is .
For this tap spacing, has less eigenvalue spread, which
is the reason for this performance. The eigenvalue spread
of a matrix indicates the range of values its eigenvalues
take. A larger ratio of the largest eigenvalue to the smallest
eigenvalue indicates a larger spread.

The TDL filter tends to increase the degrees of freedom
of the array, which may be traded against the number of
elements such that an array with elements is able to
suppress more than directional interferences, provided
their center frequencies are not the same and fall within the
FBW of the signal [107].

Though the TDL structure with constrained optimization
is the commonly used structure for broad-band array signal
processing, alternative methods have been proposed. These
include:

1) adaptive nonlinear schemes, which maximize SNR
subject to additional constraints [127];

2) a variation of a Davis beam former [88], which adapts
one filter at a time to speed up convergence [128];

3) a composite system, which also utilizes a derivative
of beam pattern in the feedback loop to control the
weights [129] to reject wideband interference;

4) optimum filters, which specify rejection response
[87];

5) a master and slave processor with broad-beam capa-
bilities without derivative constraints [130];

6) a hybrid method that uses an orthogonal transforma-
tion on data available from the TDL structure before
applying weights [131] to improve its performance in
multipath environment;

7) weighted Chebyshev method [134];

8) two-sided correlation transformation method [135].

I. Frequency-Domain Beam Forming

A general structure of the element-space frequency-
domain processor is shown in Fig. 8, where broad-band
signals from each element are transformed into frequency
domain using the FFT and each frequency bin is processed
by a narrow-band processor structure. The weighted signals
from all elements are summed to produce an output at each
bin. The weights are selected by independently minimizing
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Fig. 8. Element-space frequency-domain processor structure.

Fig. 9. Delay-and-sum beam former.

the mean output power at each frequency bin subject to
steering-direction constraints. Thus, the weights required
for each frequency bin are selected independently, and this
selection may be performed in parallel, leading to a faster
weight update. When adaptive algorithms such as the LMS
algorithm (discussed in Section III-B) is used for weight
update, a different step size may be used for each bin,
leading to faster convergence.

Various aspects of frequency-domain beam forming are
reported in the literature [136]–[150]. The performance of
the time- and frequency-domain processors are the same
only when the signals in different frequency bins are
independent. This independence assumption is mostly made
in the study of frequency-domain beam forming. When
this assumption does not hold, the frequency-domain beam
former may be suboptimal. Some of the tradeoffs and
comparisons of the two processors may be found in [136]
and [149].

A study of the frequency-domain algorithm [140] for co-
herent signals indicates that the frequency-domain method
is insensitive to the sampling rate and may be able to reduce
the effects of element malfunctioning on the beam pattern.
A study in [141] shows that due to its modular parallel

structure, beam forming in the frequency domain is well
suited for VLSI implementation and is less sensitive to
the coefficient quantization. The computational advantage
of the frequency-domain method for bearing estimation is
discussed in [144], [146], and [150], and the advantage for
correlated data is considered in [145] and [148]. A general
treatment of time- and frequency-domain realization with
a view to comparing the structure of various algorithms of
weight estimation in a unified manner is provided in [139].

J. Digital Beam Forming

Consider the analog beam-former structure shown in
Fig. 9, where the signals from each element are weighted,
delayed, and summed to form the beam output

(82)

The delays are adjusted such that the signals induced
from a given direction, where the beam needs to be pointed,
are aligned after the delays. This aspect of beam steering
was discussed in detail earlier. The weights are adjusted to
shape the beam.
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Fig. 10. Digital beam-forming process.

In digital beam forming [151]–[164], the weighted signals
from each element are sampled and stored, and beams are
formed by summing the appropriate samples such that the
required delay is incorporated by this process. It requires
each delay as an integer multiple of the sampling interval

. The process is shown in Fig. 10 for a linear array of
equispaced elements, where it is desired that a beam is
formed in direction . Let the direction be such that

(83)

Thus, the signal from theth element needs to be delayed
by seconds. This may be accomplished by selecting
the samples for summing (as shown in Fig. 10 by the line
marked with symbol ). Similarly, a beam may be steered
in direction by summing the samples connected by the
line marked with symbol in Fig. 10, where the signals
from the th element need to be delayed by
seconds. The beam formed in direction, by summing
the samples connected by the line marked with symbol,
does not require any delay.

It follows from the above discussion that using this
process, one can only form beams in those directions
that require delays equal to some integer multiple of the
sampling interval, that is

(84)

where are integers.
The number of discrete directions where a beam can

be pointed exactly increases with increased sampling, as
shown in Fig. 11, where the sampling interval is . The
figure shows that additional beams in directionsand
may be formed. These exact beams are normally referred
to as synchronous or natural beams [152], and it is possible
to form a number of these beams simultaneously using a
separate summing network for each beam.

Fig. 11. Effect of sampling on digital beam forming.

The practical requirement of an adequate set of directions
where simultaneous beams need to be pointed implies that
the array signals be sampled at much higher rates than
required by Nyquist criterion to reconstruct the waveform
back from the samples [165]. The high sampling rate means
a large number of storage requirements along with high-
speed input-output devices, analog-to-digital converters,
and large bandwidth cables [152].

The requirement of high sampling rates may be overcome
by digital interpolation [152], [157], [163]. This process
basically simulates the samples generated by high sampling
rates and thus increases the effective sampling rate. It works
by sampling the array signal at the Nyquist rate or higher
and by padding between each sample with zeros to form a
new sequence. The number of zeros padded decides the
effective sampling rate. For a sampling rate to increase

-fold, zeros are padded to create a sequence as
large as if it were created by sampling at high speed. The
padded sequences then are used for digital beam forming
by selecting appropriate samples as required, and the beam
output is passed through an FIR filter to remove unwanted
spectra. This filter is normally referred to as an interpolation
filter. The beams formed by interpolation beam formers
have slightly higher side-lobe levels.

A tutorial introduction to digital-interpolation beam form-
ers is given in [152], whereas some additional fundamentals
of digital-array processing may be found in [155]. A
comparison of many approaches to digital beam-forming
implementations is discussed in [156] and [159], showing
how a real-time implementation is a tradeoff between
various conflicting requirements of hardware complexities,
memory, and system performance.

The shape of a beam, particularly its beamwidth, is con-
trolled by the size of the array. Generally, a narrow beam
results from a larger array. In practice, the array size is fixed
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and its extent is limited. A process known as extrapolation
may be used [158] during digital beam forming to simulate
a large array extent resulting in improved beam pattern.
As the interpolation increases the effective sampling rate,
the extrapolation extends the effective array length. More
information on signal extrapolation schemes may be found
in [165]–[170].

Digital beam-forming techniques for mobile satellite
communications are examined in [95] by studying a
configuration of a digital beam-forming system capable
of working in transmit and receive mode. Digital beam
forming for mobile satellite communications has also been
reported in [59], [95], [171], and [172]. An introduction
to digital beam forming for mobile communications may
be found in [173].

K. Eigenstructure Method

As discussed previously, the eigenvalues ofcan be
divided into two sets when the environment consists of
uncorrelated directional sources and uncorrelated white
noise.

The largest eigenvalues correspond to directional
sources, and the eigenvectors associated with these eigen-
values are normally referred to as signal eigenvectors. The

– smallest eigenvalues are equal to the background
noise power, and the eigenvectors associated with these
eigenvalues are known as noise eigenvectors.

The eigenvectors of are orthogonal to each other and
thus may be thought of as spanning an-dimensional space.
This space may be divided into two orthogonal subspaces.
The subspace spanned by signal eigenvectors is referred to
as the signal subspace, whereas the subspace spanned by
the noise eigenvectors is referred to as the noise subspace.

The signal subspace is also spanned by steering
vectors associated with directional sources. This fact
is exploited by eigenstructure methods of beam forming in
a number of ways [174]–[178].

An array using a weight vector contained in the signal
space such that it is orthogonal to the interference-direction
steering vector is able to cancel the interference. In situa-
tions where the directions of interferences are not known,
the weight is estimated by minimizing a suitably selected
cost function. A weight estimation method that minimizes
a cost function applicable to a digital communications
system using a BPSK modulating scheme discussed in [176]
demonstrates the utility of this beam-forming concept.

An application of the eigenstructure method for estimat-
ing weights of beam-space processors using eigenvectors
of the , that is, the matrix with the signal component
removed, as is done for secondary beams, suggests the
effectiveness of this method for interference canceling
[178], [179] in beam space and for achieving the desired
performance in a short observation time. An application of
the eigenstructure method for correcting errors in steering
vectors is reported in [174].

Forming beams using eigenvectors associated with the
largest eigenvalues of for mobile communications appli-
cations has been reported in [180].

III. A DAPTIVE BEAM FORMING

In practice, neither nor is available to calculate
the optimal weights of the array, and the weights are
adjusted by some means using the available information
derived from the array output, array signals, and so on to
make an estimate of the optimal weights. There are many
such schemes, which are normally referred to adaptive
algorithms. Some of these algorithms are described here,
and their characteristics, such as the speed of adaption
and the mean and variance of the estimated weights, and
the parameters affecting these characteristics are briefly
discussed.

A. SMI Algorithm

This algorithm estimates the array weights by replacing
with its estimate. An unbiased estimate ofusing

samples of the array signals
may be obtained using a simple averaging scheme

(85)

where denotes the estimate at theth instant of time
and denotes the array signal sample, also known as the
array snapshot, at theth instant of time, with replaced
by and the sampling time omitted for the ease of
notation.

The estimate of may be updated when the new samples
arrive using

(86)

and a new estimate of the weights at time instant
may be made. The expression of the optimal weights

requires the inverse of and this process of estimating
and then its inverse may be combined to update the inverse
of from array signal samples using the Matrix Inversion
Lemma as follows:

(87)

with

(88)

This scheme of estimating weights using the inverse
update is referred to as the RLS algorithm, which is further
described in Section III-C.

It should be noted that as the number of samples grows,
the matrix update approaches its true value, and thus the
estimated weights approach the optimal weights, that is,
as and or , as
the case may be. More discussion on the SMI algorithm
may be found in [40] and [181]. Procedures for estimating
array weights with efficient computation using SMI are
considered in [182], and an analysis to show how it
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performs as a function of the number of snapshots is
provided in [89].

Application of SMI to estimate the weights of an array
to operate in mobile communications systems has been
considered in many studies [56], [59], [60], [183]–[186].
The study in [183] considers beam forming for GSM
signals using a variable reference signal as available during
the symbol interval of the TDMA system. An application
discussed in [184] is for vehicular mobile communications,
whereas that presented in [186] is for inducing delay spread
in indoor radio channels. A presentation in [59] is for
mobile satellite communications systems.

B. LMS Algorithm

The application of the LMS algorithm to estimate the
optimal weights of an array is widespread, and its study
has been of considerable interest for some time now. The
algorithm is referred to as the constrained LMS algorithm
when the weights are subjected to constraints at each iter-
ation. It is referred to as an unconstrained LMS algorithm
when the weights are not constrained at each iteration. The
latter is mostly applicable when weights are updated using
a reference signal and no knowledge of the direction of the
signal is utilized, as is the case for the constrained case.

The algorithm updates the weights at each iteration by
estimating the gradient of the quadratic surface and then
moving the weights in the negative direction of the gradient
by a small amount. The constant that determines this
amount is normally referred to as the step size. When
this step size is small enough, the process leads these
estimated weights to the optimal weights. The convergence
and the transient behavior of these weights, along with their
covariance, characterize the LMS algorithm, and the way
that the step size and the process of gradient estimation
affect these parameters is of great practical importance.
These and other issues are now discussed in detail.

1) Unconstrained LMS Algorithm: A real-time uncon-
strained LMS algorithm for determining optimal weight

of the system using the reference signal is [27],
[187]–[199]

(89)

where denotes the new weights computed at the
th iteration; is a positive scalar (gradient step

size) that controls the convergence characteristic of the
algorithm, that is, how fast and how close the estimated
weights approach the optimal weights; and is an
unbiased estimate of the gradient of the MSE

MSE

(90)

at the th iteration with respect to , given by

MSE (91)

It should be noted that at the th iteration, the array
is operating with weights computed at the previous

iteration. The array signal vector, however, is , the
reference signal sample is , and the array output

(92)

In its standard form, the LMS algorithm uses an estimate
of the gradient by replacing and with their noisy
estimates available at the th iteration, leading to

(93)

where is the error between the array output and
the reference signal, that is

(94)

Thus, the estimated gradient is a product of the error
between the array output and the reference signal as well
as the array signals after theth iteration. For ,
with denoting the maximum eigenvalue of, the
algorithm is stable and the mean value of the estimated
weights converges to the optimal weights. As the sum
of all eigenvalues of equals its trace, the sum of its
diagonal elements, one may select the gradient step size

in terms of measurable quantities using Tr ,
with Tr denoting the trace of . It should be noted that
each diagonal element of is equal to the average power
measured on the corresponding element of the array. Thus,
for an array of identical elements, the trace ofequals the
power measured on any one element times the number of
elements in the array.

The convergence speed of the algorithm refers to the
speed by which the mean of the estimated weights (en-
semble average of many trials) approaches the optimal
weights. It normally is characterized bytrajectories along

eigenvectors of with the time constant of theth
trajectory given by

(95)

with denoting the th eigenvalue of . Thus, these time
constants are functions of the eigenvalues of, the smallest
one dependent upon , which normally corresponds
to the strongest source, and the largest one controlled by
the smallest eigenvalue, which corresponds to the weakest
source or the background noise. Therefore, the larger the
eigenvalue spread, the longer it takes for the algorithm to
converge. In terms of interference rejection capability, this
means canceling the strongest source first and the weakest
source last.

The convergence speed of an algorithm is an important
property, and its importance for mobile communications is
highlighted in [200] by discussing how the LMS algorithm
does not perform as well as some other algorithms due to its
slow convergence speed in situations of fast-changing sig-
nal characteristics. The availability of time for an algorithm
to converge in mobile communications systems depends not
only on the system design, which dictates the duration of
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the user signal present (such as the user slot duration in a
TDMA system) but also on the speed of mobiles, which
changes the rate at which a signal fads. For example, a
mobile on foot would cause the signal to fade at a rate
of about 5 Hz, whereas the rate would be on the order
of about 50 Hz for a vehicle mobile, implying that an
algorithm needs to converge faster in a system being used
by vehicle mobiles compared to one used by a hand-held
portable device [47]. Some of these issues for an IS-54
system are discussed in [56], where the convergence of
the LMS and SMI algorithms in mobile communications
situations is compared.

Even when the mean of the estimated weights converges
to the optimal weights, they have finite covariance, that is,
their covariance matrix is not identical to a matrix with all
its elements equal to zero. The covariance matrix of the
weights is defined as

(96)

where denotes the mean of the estimated
weights at the th iteration. This causes the average of the
MSE not to converge to the MMSE and leads to the excess
MSE. From the expressions of the MSE and MMSE, it
follows that for a given , the MSE is given by

MSE MMSE (97)

where

(98)

is the difference between the estimated weights and the
optimal weights at theth iteration. Note that
as . As all elements of do not approach
zero as , it follows that the average value of the
excess MSE does not approach zero as , that is,

.
The transient and steady-state behavior of the weight co-

variance matrix and the average excess MSE are important
parameters of the LMS algorithm and are discussed in detail
in [188] and [198]. A study of the convergence of the LMS
algorithm applicable to the PIC processor and a discussion
on the gradient step size selection can be found in [75].

The difference between the weights estimated by the
adaptive algorithm and the optimal weights is further char-
acterized by the ratio of the average excess steady-state
MSE and the MMSE. It is referred as the misadjustment. It
is a dimensionless parameter that measures the performance
of the algorithm. The misadjustment is a kind of noise and
is caused by the use of the noisy estimate of the gradient.
This noise is referred to as the misadjustment noise. For the
present case when the gradient is estimated by multiplying
the array signals with the error between the array output and
the reference signal and the gradient step size is selected
such that

(99)

and

(100)

then the misadjustment is given by

(101)

For a sufficiently small , this results in Tr .
It follows from this expression that increasingincreases

the misadjustment noise. On the other hand, an increase
in causes the algorithm to converge faster, as discussed
earlier. Thus, the selection of the gradient step size requires
satisfying conflicting demands of 1) reaching vicinity of
the solution point more quickly but wandering around over
a larger region and causing a bigger misadjustment and
2) arriving near the solution point slowly with the smaller
movement in the weights at the end. The latter causes an
additional problem, particularly in a nonstationary environ-
ment, say, when the interference and optimal solution move
slowly, causing adapting estimated weights to lag behind
the optimal weights. This phenomenon is referred to as the
weight vector lag.

Many schemes, including variable step size, have been
suggested to overcome this problem [201]–[208]. Some of
these schemes are now discussed.

The adaptive algorithm estimates the weights by mini-
mizing the MSE. Thus, in schemes where a variable step
size is used, it reflects the value of the MSE at that iteration
(going up and down as the MSE goes up and down)
such that it stays between the maximum permissible value
for convergence and the minimum value based upon the
allowed misadjustment. It may be truly variable or it may
be allowed to switch between a few preselected values for
the ease of implementation, as well as to shift by one bit left
or right where digital implementation is used. The step size
may also be adjusted to reflect the change in the direction
of the gradient of error surface at each iteration [207].

The optimal value of the step size at each step is
suggested in [203] such that it minimizes the MSE at each
iteration. This is a function of the value of the true gradient
at each iteration and . In practice, these may be replaced
by their instantaneous values, leading to a suboptimal value.

Instead of having a single step size for an entire weight
vector, one may select a variable step size for each weight
separately, leading to an increased convergence of the
algorithm [204]. The convergence speed of an algorithm
may also be increased by adjusting the weights such that
interferences are canceled one at a time [209], [210] and
by using a scheme known as block processing [211]. For
broad-band signals, an implementation in the frequency
domain may help increase the speed of convergence.

The application of frequency-domain beam forming to
estimate the weights using the LMS algorithm for the
case when a reference signal is available [138], [139],
[142], [143] shows how the frequency-domain approach
yields improved convergence and reduced computational
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Fig. 12. Constrained LMS algorithm: pictorial view of the projection process.

complexities over the time-domain approach. Improved
convergence normally arises from the use of different
gradient step sizes in different bins. For the constrained
LMS case, this is likely to cause deterioration in the
steady-state performance of the algorithm. This deterio-
ration, however, does not affect the performance of the
unconstrained algorithm [212].

An algorithm known as a sign algorithm [208], [213],
where the error between the array output and the reference
signal is replaced by its sign, is computationally less
complex than the LMS algorithm, as discussed.

The algorithm is usually analyzed assuming that succes-
sive samples are uncorrelated. This assumption helps in
simplifying the mathematics by allowing expectations of
data products to be replaced by the products of their expec-
tations. A discussion of situations of correlated samples and
a nonstationary environment may be found in [214]–[216].

Applications of an unconstrained LMS algorithm to mo-
bile communications systems using an array include base-
mobile communications systems [46], indoor-radio systems
[47], and satellite-to-satellite communications systems [97].

2) Normalized LMS Algorithm: This algorithm is a vari-
ation of the constant-step-size LMS algorithm and uses
a data-dependent step size at each iteration. At theth
iteration, the step size is given by

(102)

where is a constant. The algorithm and its convergence
using various types of data have been studied widely
[217]–[224]. It avoids the need for estimating the eigen-
values of the correlation matrix or its trace for selection
of the maximum permissible step size. The algorithm
normally has better convergence performance and less

signal sensitivity compared to the normal LMS algorithm.
A discussion of its application to mobile communications
can be found in [225].

3) Constrained LMS Algorithm: A real-time constrained
algorithm [7], [25], [226]–[233] for determining the optimal
weight vector is

(103)

where

(104)

is a projection operator, is an unbiased estimate
of the gradient of the power surface with
respect to after the th iteration, is the gradient
step size, and is the steering vector in the look direction.

The algorithm is “constrained” because the weight vector
satisfies the constraint at every iteration, that is,

. The process of imposing constraints may be under-
stood from Fig. 12, which shows how weights are undated
and how a projection system uses a vector diagram for a
two-weight system [25]. The figure shows constant power
contours, the constraint surface (a line for a two-
dimensional system), a surface parallel to the constraint
surface passing through the origin , weight
vectors and , and the gradient at theth
iteration.

The point on the diagram indicates the position of
the weight after completion of the th iteration. It is
the cross section of the constraint equation
and the power surface (not shown in the
figure). The weights are perturbed by adding a small amount

and then are projected on using
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projection operator . This point is indicated by on the
diagram. Note that . Thus, the projection operator
projects the weights orthogonal to. The constraint now
is restored by adding and the updated weights

move to point . The process continues by moving
the estimated weights toward point, the optimal solution.

The effect of the gradient step sizeon the convergence
speed and the misadjustment noise may also be understood
using this figure. A larger step size means that the weight
vector moves faster toward point, the solution point, but
wanders around it over a larger region, not reaching close
to it and causing more misadjustment.

The gradient of with respect to is
given by

(105)

and its computation using this expression requires knowl-
edge of , which normally is not available in practice. For
a standard LMS algorithm, an estimate of the gradient at
each iteration is made by replacingby its noisy sample

available at time instant , leading
to .

Thus, the gradient estimate is the product of the array
signals and the array output available after theth iteration.
The mean value of the weights estimated by the algo-
rithm using this gradient converges to the optimal weights,
provided that the gradient step size is small enough to
satisfy

(106)

The convergence of the mean weights toalong the th
eigenvector of has the time constant

(107)

where denotes the natural logarithm of and
( ) and ( ), respectively, denote theth
eigenvalue and the maximum eigenvalue of .

It follows from

(108)

and

(109)

that , and hence the convergence speed
of the mean value of the weights characterized by the
time constants and the upper limit on the gradient step
size depends only on the eigenvalues of , indicating
that the signal arriving from the look direction does not
affect these quantities. The eigenvalues of are a
function of the directions and powers of the directional
sources as well as the array geometry, with the maximum
eigenvalue controlled by the strongest source governing the
initial convergence speed. The latter part of the convergence
is controlled by the smaller eigenvalues associated with the
weak sources or the background noise, and thus the overall

speed of the algorithm depends upon the eigenvalue spread
of .

The discussion so far has concentrated on the conver-
gence of the mean value of the weights to the optimal
weights. The variance of these weights is an important
parameter, and the transient and steady-state behavior of
the weight covariance matrix are indicators of
the performance of the algorithm, as discussed previously
for the unconstrained LMS algorithm. An expression for

indicates [228] that it is a function of the variance
of the gradient estimate. For the standard algorithm, an
expression for the variance of the gradient is given by

(110)

The steady-state value of the weight covariance matrix
governs the misadjustment. For the standard algorithm, it
is given by

(111)

a) Signal sensitivity: The convergence of the mean
weights to the optimal weights is a function of the
eigenvalues of and thus is independent of the
look direction signal. This is not the case, however,
for the weight covariance matrix, which depends on
the projected covariance of the gradient used for the
weight update algorithm, that is, . For the
standard algorithm, this variance is a product ofand
the mean output power at the th instant
of time. Thus, , which is proportional to

, contains a signal from the look
direction indicating that the performance of the standard
LMS algorithm is not independent of the signal and that the
transient behavior of weight covariance depends on it. The
following, a rather heuristic argument, explains how the
signal level causes the weights to fluctuate using an explicit
expression of weights rather than their weight covariance
matrix. Rewrite the constrained LMS algorithm as follows:

(112)

and examine the projected gradient vector term .
Expressing

(113)

and noting that

(114)

with denoting the sample of the complex modulating
function of the signal and being the array receiver
vector not containing the signal, one obtains

(115)

is a random quantity with variance equal to the
look-direction signal power. This makes a noisy
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quantity that fluctuates with the signal power and causes
the to fluctuate. The fluctuations in
increase as the signal power increases. Thus, the weights
estimated by the standard algorithm are sensitive to the
signal power, requiring a lower step size in the presence of
a strong signal for the algorithm to converge, which in turn
reduces its convergence speed.

This fact has been demonstrated in [234] for a high-speed
GMSK mobile communications system. The system has
been implemented by mounting an array on a vehicle to
measure its BER performance.

The signal sensitivity of the standard LMS algorithm
is caused by the use of a sample correlation matrix in
estimating the gradient and could be reduced by using
an estimate of the correlation matrix from all available
samples. A recursive LMS algorithm uses all previous
samples and updates the correlation matrix as a new sample
arrives, using

(116)

The algorithm then uses this matrix to estimate the
required gradient

(117)

The estimated gradient is unbiased and has variance

(118)

Comparing this with the variance of the standard LMS
algorithm, it follows that the variance of the gradient was
reduced by a factor of using the recursive method,
thus making the recursive algorithm less signal sensitive.
As , the signal sensitivity of the recursive LMS
algorithm approaches zero.

The signal sensitivity of the LMS also can be reduced by
spatial averaging instead of sample averaging, as is done
when the weights are estimated using a structured gradient
algorithm.

b) Structured gradient algorithm: For a linear array of
equispaced elements, the array correlation matrix has the
Toeplitz structure, that is

(119)

with being the correlation lags.
The noisy sample of used in estimating the gradient for
the standard LMS algorithm does not have this structure.
The structured gradient algorithm [231], [232] exploits this
structure of such that the estimated matrix has this
structure. The th lag is estimated as

(120)

where denotes the number of possible combinations
of elements with lag and summation is over all these
combinations. For a linear array of equispaced elements,

. It should be noted that for a nonuniform linear
array, the amount of improvement realized by the structured
method would depend upon the number of elements in
with the same correlation lag.

An algorithm that uses the structured method to estimate
the matrix using all available samples is discussed in [233].
It has a better convergence performance than that of the
RLS algorithm in the presence of a strong look-direction
signal. The algorithm is referred to as the improved LMS
algorithm.

The discussion of the LMS algorithm implies that one has
access to all array signals. In situations where this access
is not available or not economical, one could estimate the
required gradient using perturbation schemes [226]–[228],
[235]. Algorithms using these schemes perturb the array
weights using some orthogonal sequences and use the
measured array output power over the perturbation cycle
to estimate the gradient. For a perturbation cycle of length

, for example, the algorithm requires samples at each
iteration to estimate the gradient. Thus, the iteration number
and the sample numbers are different and the algorithm
is slower by a factor of when measured in time rather
than iteration number. The gradient estimation also adds
additional noise to the system, known as the perturbation
noise.

A method similar to that used in [236] for adjusting
equalizer taps can also be used for adjusting array weights.
The method uses a running average of the past gradients to
estimate the required gradient at theth iteration rather than
using the past correlation matrixes to estimate , as is
done in the recursive LMS case to reduce the weight noise.

It should be noted that all of these gradient estimating
schemes—which reduce the variance of the gradient, lead-
ing to less fluctuations in array weights, inherently increase
the convergence speed of the algorithm as one is able to
increase the step size without compromising the stability
of the algorithm.

3) Implementation Issues: The convergence speed, fluc-
tuations in array weights during adaption, and misadjust-
ment noise are the measures of the transient and steady-state
behavior of the LMS algorithm. The theoretical perfor-
mance of the algorithm and the effect of the look-direction
signal and gradient step size discussed in the previous
section assume the existence of infinite precision, that is, the
variable is allowed to take any value. Now, the implications
of finite-precision implementations are briefly discussed.

a) Finite-precision arithmetic: In real life, when the
algorithm is implemented using digital hardware, where
a variable can take only discrete values, there are other
parameters that affect its performance and other issues that
need consideration, including quantization noise as well
as roundoff and truncation noise caused by finite-precision
arithmetic [204], [237]–[244].

First, when a -bit quantizer is used to convert an analog
signal of range to into a digital signal, it adds
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a quantization noise of zero mean and variance [245]

(121)

to the system. Second, the effect of the finite word length
of the devices where the numbers are stored causes the
roundoff or truncation noise to be added to the system.
This arises from the fact that when arithmetic operations are
performed using these numbers, the answers are normally
longer than the available word length and thus need to be
rounded off or truncated to fit into finite word memory.
Last, all the variables, such as the estimated gradient,
gradient step size, and estimated weights, are allowed to
take only finite values and can be increased or decreased
by a factor of two. The combined effect of all these on the
algorithm is a larger fluctuation in the weights and a larger
misadjustment than otherwise.

The misadjustment appears to be the most sensitive to
the finite word length effect on weights, suggesting that
the weights should be implemented using a longer word
length [237]. A reduction in the step size below certain
levels may even cause the misadjustment to increase [242],
which is contrary to the infinite-precision case, where a
decrease in the step causes the misadjustment to decrease.
It appears [244] that the finite word length effects are
amplified in an environment that yields smaller eigenvalues
for the correlation matrix.

An important effect of the finite word length on the
weight update is that when a small input does not cause
the weights to move more than the least significant bit
(the smallest possible increment, which depends upon the
number of bits used to store weights), then the algorithm
stalls and the weights do not change anymore [242], requir-
ing a bigger step size, which in turn increases the weight
fluctuations.

A postalgorithm smoothing scheme suggested in [238]
appears to reduce the weight fluctuations, leading to a better
convergence performance. It suggests a running average
of past weights. Thus, the weights are recursively updated
using past weights with or without finite memory.

A discussion of system design applicable to mobile satel-
lite communications that takes into account quantization
noise and other issues discussed above may be found in
[59].

b) Real versus complex implementation: There are situ-
ations where the input data to the weight adaption scheme
are real, and situations where these are complex (with
real and imaginary parts denoting in-phase and quadrature
components). In both of these cases, the weights could be
updated using the real LMS algorithm or the complex LMS
algorithm. The former utilizes real arithmetic and uses real
variables and updates real weights (the in-phase and quadra-
ture components are updated separately when complex data
are available), whereas the complex algorithm [246] utilizes
complex arithmetic, uses complex variables, and updates as
well as implements weights as complex variables similar to
the treatment presented in this paper. For real data using
a complex algorithm, one needs to generate the quadrature

component using the Hilbert transformer or quadrature filter
[247], which has the transfer functions

(122)

For a similar misadjustment, the complex algorithm con-
verges faster than the real algorithm. For more details on
this aspect, see, for example, [198] and [228].

C. RLS Algorithm

The convergence of the LMS algorithm depends upon
the eigenvalues of . In an environment yielding with a
large eigenvalue spread, the algorithm converges with slow
speed. This problem is solved in an RLS algorithm [64],
[248]–[258] by replacing the gradient step sizewith a gain
matrix at the th iteration, producing the weight
update equation

(123)

where is given by

(124)

where , a real scalar smaller than but close to one, is used
for exponential weighting of the past data and is referred
to as the forgetting factor, as the update equation tends
to deemphasize the old samples. The quantity is
normally referred to as the memory of the algorithm. Thus,
for , the memory of the algorithm is close to 100
samples. The RLS algorithm updates the required inverse of

using the previous inverse and the present sample as

(125)

The matrix is initialized as

(126)

A discussion on the selection of and its effects on
the performance of the algorithm can be found in [253].
The RLS algorithm minimizes the cumulative square error
[251], [252]

(127)

and its convergence is independent of the eigenvalue dis-
tribution of the correlation matrix.

The algorithm presented here is the exact RLS algorithm.
For other forms of the RLS algorithm with improved
computation efficiency, see, for example, [249] and [253].
A comparison of the convergence speed of the LMS,
the RLS, and some other gradient-based algorithms using
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quantized or clipped data indicates that RLS is the most
efficient and LMS is the slowest [259].

A computer-simulation study of the RLS, LMS, and SMI
algorithms in a mobile communications situation suggests
that the former outperforms the latter two in flat-fading
channels [260]. An application of the RLS algorithm for the
reverse link of a cellular communication using the CDMA
system is considered in [261] to show an increase in channel
capacity by an adaptive array.

D. CMA

CMA is a gradient-based algorithm that works on the
premise that the existence of an interference causes fluctu-
ation in the amplitude of the array output, which otherwise
has a constant modulus. It updates the weights by minimiz-
ing the cost function [96], [262]–[264]

(128)

using the following equation:

(129)

where is the array output after the
th iteration, is the desired amplitude in the absence

of interference, and denotes an estimate of the
gradient of the cost function. Similar to the LMS algorithm
discussed previously, it uses an estimate of the gradient by
replacing the true gradient with an instant value given by

(130)

where

(131)

The weight update equation for this case becomes

(132)

In appearance, this is similar to the LMS algorithm with
a reference signal where

(133)

Its application to a digital land-mobile radio communica-
tions system using TDMA is studied in [265] to compensate
for selective fading. Discussions of hardware implementa-
tion of a CMA adaptive array and its BER performance
for high-speed transmission in mobile communications may
be found in [234] and [266]. Development of CMA for
beam-space array signal processing, including its hardware
realization, has been reported in [99]. The results presented
in [96] indicate that the beam-space CMA is able to cancel
interferences arriving from directions other than the look
direction.

CMA is useful for eliminating correlated arrivals and is
effective for constant modulated envelope signals such as
GMSK and QPSK, which are used in digital communi-
cations. The algorithm, however, is not appropriate for the
CDMA system because of the required power control [261].
Use of CMA to separate cochannel FM signals blindly

in mobile communications has been investigated in [267].
A variation of CMA referred to as differential CMA and
reported in [180] has inferior convergence characteristics
compared to CMA but may be improved using DOA
information to make it operative in beam space.

E. Conjugate Gradient Method

An application of the conjugate gradient method
[268]–[270] to adjust the weights of an antenna array
is discussed in [57] and [271]. The method in general is
useful for solving a set of equations of the form
to obtain .

For an array processing problem [57], [271],denotes
the array weights, is a matrix with each of its columns de-
noting consecutive samples obtained from array elements,
and is a vector containing consecutive samples of the
desired signal. Thus, a residual vector

(134)

denotes an error between the desired signal and the array
output at each sample, with the sum of the squared error
given by .

The method starts with an initial guess of the
weights, obtains a residual

(135)

and an initial direction vector

(136)

and moves the weights in this direction to yield a weight
update equation

(137)

where the step size

(138)

The residual and the direction vector are
updated using

(139)

and

(140)

with

(141)

The algorithm is stopped when the residual falls below
a certain predetermined level. It should be noted that the
direction vector points in the direction of the gradient of
the error surface at the th iteration, which the
algorithm is trying to minimize. The method converges to
the minimum of the error surface within at mostiterations
for an -rank matrix equation and thus provides the fastest
convergence of all the iterative methods [57], [270], [272].

GODARA: ANTENNA ARRAYS AND MOBILE COMMUNICATIONS—PART II 1219



Use of the conjugate gradient method to eliminate multi-
path fading in mobile communications situations has been
studied in [57] and [271] to show that the BER performance
of the system using the conjugate gradient method is better
than that using RLS algorithm.

F. Neural Network Approach

In this section, an algorithm referred to as Madaline Rule
III (MRIII) is described. A discussion of various aspects of
this algorithm as well as other related issues can be found
in [273]. For a general theory of neural networks and their
applications, see, for example, [274] and [275].

The MRIII algorithm described here is applicable when
the reference signal is available and minimizes the MSE
between the reference signal and the modified array output
rather than the MSE between the reference signal and the
array output, as is the case for other algorithms discussed
previously. The array output is modified using a nonlinear
mapping such as hyperbolic tangent

(142)

and the weights are updated using

(143)

where is the gradient step size and is the instant
gradient of the MSE surface with respect to the array
weights .

When the array is operating with weights , produc-
ing the array output

(144)

the modified output becomes

(145)

and the resulting error signal is given by

(146)

The instant gradient of the MSE surface with respect to the
array weights thus becomes

(147)

Replacing with for small
in (147) results in

(148)

where denotes the change in the error output when
the array output is perturbed by a small amount and

could be measured to estimate the instant gradient. The
weight update equation then becomes

(149)

The MSE surface of the error signal may have local
minimas, and thus the global convergence of the MRIII
algorithm is not guaranteed, which is not the case when
MSE between the reference signal and the array output is
minimized [273]. The algorithm, however, is very robust,
suitable for analog implementation and resulting in fast
weight updates.

The MRIII algorithm described here is suitable when
the reference signal is available. A scheme to solve a
constrained beam-forming problem using neural networks
is analyzed in [276], and its implementation using switched
capacitor circuits is described in [277]. Computer simula-
tions and experimental results indicate the suitability of the
scheme.

IV. DOA ESTIMATION METHODS

In this section, a review of DOA estimation methods, in-
cluding their performance, sensitivity, and limitations [278],
is presented. The direction of a source is parameterized by
the variable .

A. Spectral Estimation Methods

These methods estimate the DOA by computing the
spatial spectrum and then determining the local maximas
[43], [279]–[284]. Most of these techniques have their roots
in time-series analysis. A brief overview and comparison of
some of these methods can be found in [279] and [281].

One of the earliest methods of spectral analysis is the
Bartlett method [279], [284], where a rectangular window
of uniform weighting is applied to the time-series data to be
analyzed. For bearing estimation problems using an array,
this is equivalent to equal weighting on each element. Thus,
by steering the array in direction, this method estimates
the mean power, an expression for which is given by

(150)

where denotes the steering vector associated with the
direction . A set of steering vectors associated with
different is often referred to as the array manifold in DOA
estimation literature. In practice, it may be measured at the
time of array calibration.

The process is similar to that of mechanically steering
the array in this direction and measuring the output power.
Due to the resulting side lobes, the output power is not
only contributed from the direction in which the array is
steered but from the directions where the side lobes are
pointing. The processor is also known as the conventional
beam former, and the resolving power of the processor
depends upon the aperture of the array or the beamwidth
of the main lobe. Its use for mobile communications has
been studied in [285].
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B. MVDR Estimator

This is the ML method of spectrum estimation [43],
which finds the ML estimate of the power arriving from
a point source in direction assuming all other sources as
interferences. In beam-forming literature, it is known as the
MVDR beam former as well as the optimal beam former
since in the absence of errors, it maximizes the output
SNR and passes the look-direction signal undistorted. For a
DOA estimation problem, the term “maximum likelihood”
is used for the method that finds the ML estimate of the
direction rather than of the power, as is done by this method
[286]. Following this convention, the current estimator in
this paper is referred to as the MVDR estimator.

This method uses the array weights, which are obtained
by minimizing the mean output power subject to unity
constraint in the look direction. An expression for the power
spectrum is given by

(151)

This method has better resolution properties than the
Bartlett method [42] but does not have the best resolution
properties of any method [281].

C. Linear Prediction Method

This method estimates the output of one sensor using
linear combinations of the remaining sensor outputs and
minimizes the mean square prediction error, that is, the
error between the estimate and the actual output [281],
[287]. Thus, it obtains the array weights by minimizing the
mean output power of the array subject to the constraint that
the weight on the selected sensor is unity. An expression
for the array weights and the power spectrum is given,
respectively, by [281]

(152)

and

(153)

where is a column vector of all zeros except one element,
which is equal to one. The position of one in the column
corresponds to the position of the selected element in the
array for predicting its output. There is no criterion for
proper choice of this element. The choice of this element,
however, affects the resolution capability and the bias in
the estimate, and these effects are dependent upon the SNR
and separation of the directional sources [281]. The linear
prediction methods perform well in a moderately low SNR
environment and are a good compromise in situations where
sources are of approximately equal strength and are nearly
coherent [288].

D. MEM

This method finds a power spectrum such that its Fourier
transform equals the measured correlation subjected to the
constraint that its entropy is maximized [289]. The entropy
of a Gaussian band-limited time series with power spectrum

is defined as

(154)

where is the Nyquist frequency. For estimating DOA
from the measurements using an array of sensors, the
method finds a continuous function such that
it maximizes the entropy function

(155)

subject to the constraint that the measured correlation
between theth and the th element satisfies

(156)

where denotes the differential delay between ele-
ments and due to a source in direction. The solution to
this problem requires an infinite dimensional search, which
may be transformed to a finite dimensional search using the
duality principle [290], leading to

(157)

where is obtained by minimizing

(158)

subject to

(159)

and

(160)

with and defined as

(161)

(162)

It should be noted that the dimension of this vector depends
upon the array geometry and is equal to the number of
known correlations for every possible and .

The minimization problem defined above may be solved
iteratively using a standard gradient descent algorithm.
More information on various issues of the MEM may be
found in [200] and [291]–[295]. The suitability of MEM
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for mobile communications in fast-fading signal conditions
has been studied in [200].

E. MLM

This method estimates the DOA’s from a given set of
array samples by maximizing the log-likelihood function
[286], [296]–[303]. The likelihood function is the joint
probability density function of the sampled data given
the DOA’s and viewed as a function of the desired vari-
ables—the DOA’s, for this case. The method searches for
those directions that maximize the log of this function,
the log-likelihood function. The ML criterion signifies that
plane waves from these directions are most likely to cause
the given samples to occur [304].

The maximization of the log-likelihood function is a
nonlinear optimization problem. In the absence of a closed-
form solution, it requires iterative schemes for solutions.
There are many such schemes available in the literature.
The well-known gradient decent algorithm using the es-
timated gradient of the function at each iteration as well
as the standard Newton–Raphson method are well suited
for the job [305]. Other schemes, such as the alternating
projection method [298], [300] and the expectation maxi-
mization algorithm [286], [306], [307], have been proposed
for solving this problem in general as well as for special-
ized cases, such as unknown polarization [301], unknown
noise environments [302], and contaminated Gaussian noise
[296]. A fast algorithm [308] based upon Newton’s method
developed for estimating frequencies of sinusoids may be
modified to suit the DOA estimation based upon ML
criterion.

The ML method gives a superior performance compared
to other methods, particularly when the SNR is small, the
number of samples are small, or the sources are correlated
[298], and thus is of practical interest. For a single source,
the estimates obtained by this method are asymptotically
unbiased [301], that is, the expected values of the estimates
are equal to their true values. In that sense, it may be used
as a standard to compare the performance of other methods.
The method normally assumes that the number of sources

are known [298].
When a large number of samples are available, other,

computationally more efficient schemes may be used with
performance almost equal to this method [299]. Analysis
of the method to estimate the direction of sources when the
array and the source are in motion relative to each other
indicates its potential for mobile communications [309],
[310].

F. Eigenstructure Methods

These methods rely on the following properties of: 1)
The space spanned by its eigenvectors may be partitioned
into two subspaces, namely, the signal subspace and the
noise subspace, and 2) the steering vectors corresponding to
the directional sources are orthogonal to the noise subspace.
As the noise subspace is orthogonal to the signal subspace,
these steering vectors are contained in the signal subspace.

It should be noted that the noise subspace is spanned by
the eigenvectors associated with the smaller eigenvalues of
the correlation matrix, and the signal subspace is spanned
by the eigenvectors associated with its larger eigenvalues.

In principle, the eigenstructure-based methods search for
directions such that the steering vectors associated with
these directions are orthogonal to the noise subspace and
are contained in the signal subspace. In practice, the search
may be divided into two parts. First, find a weight vector
that is contained in the noise subspace or is orthogonal to
the signal subspace. Then search for directions such that
the steering vectors associated with these directions are
orthogonal to this vector. The source directions correspond
to the local minimas of the function . In this
function, denotes a steering vector.

When these steering vectors are not guaranteed to be in
the signal subspace, there may be more minimas than the
number of sources, and the distinction between the actual
source direction and a spurious minimas in is made
by measuring the power in these directions.

Many methods have been proposed that utilize the eigen-
structure of the array correlation matrix. These methods
differ in the way the available array signals have been
utilized, required array geometry, applicable signal model,
and so on. Some of these methods do not require explicit
computation of the eigenvalues and eigenvectors of the
array correlation matrix, whereas in others, it is essential.
An effective computation of these quantities may be made
by methods similar to those described in [311]. When this
matrix is not available, a suitable estimate of the matrix is
made from the available samples.

One of the earliest methods of DOA estimation based on
the eigenstructure of a covariance matrix is due to Pisarenko
[312] and has a better resolution property than those of the
minimum variance, maximum entropy, and linear prediction
methods [313]. A critical comparison of this method with
two other schemes [314], [315] applicable for a correlated
noise field that exists in situations of multipaths has been
presented in [316] to show that Pisarenko’s method is an
economized version of these schemes restricted to equis-
paced linear arrays. The scheme presented in [314] is useful
for off-line implementation similar to those presented in
[16], [317], and [318], whereas the method described in
[315] is useful for real-time implementations and uses a
normalized gradient algorithm to estimate a vector in the
noise subspace from available array signals. Some other
schemes suitable for real-time implementation are discussed
in [319]–[321]. A scheme known as the matrix pencil
method, shown [322] to be similar to Pisarenko’s method,
has been described in [323].

Eigenstructure methods may also be used for finding
DOA when the background noise is not white but has either
a known covariance [324] or an unknown covariance [325],
or when the sources are in the near field and/or the sensors
have unknown gain patterns [326]. For the latter case, the
signals induced on all elements of the array are not of equal
intensity, as is the case when the array is in the far field
of the directional sources. The effect of spatial coherence
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on the resolution capability of these methods is discussed
in [327] and [328], whereas the issue of the optimality of
these methods is considered in [329]. Now, some of the
popular schemes are described in detail.

G. MUSIC Algorithm

1) Spectral MUSIC: The MUSIC method [330] is a rel-
atively simple and efficient eigenstructure method of DOA
estimation. It has many variations and is perhaps the most
studied method in its class. In its standard form, also
known as spectral MUSIC, the method estimates the noise
subspace from the available samples. This can be done
by either eigenvalue decomposition of the estimated array
correlation matrix or singular value decomposition of the
data matrix, with its columns being the snapshots or
the array signal vectors. The latter is preferred for numerical
reasons [331].

Once the noise subspace has been estimated, a search
for directions is made by looking for steering vectors
that are as orthogonal to the noise subspace as possible.
This is normally accomplished by searching for peaks in
the MUSIC spectrum given by

(163)

where denotes an by – dimensional matrix with
its – columns being the eigenvectors corresponding
to the – smallest eigenvalues of the array correlation
matrix, and denotes the steering vector corresponding to
direction .

It should be noted that instead of using the noise subspace
and searching for directions with steering vectors orthog-
onal to this subspace, one may use the signal subspace
and search for directions with steering vectors contained
in this space [332]. This amounts to searching for peaks in

where denotes an by -dimensional matrix,
with its columns being the eigenvectors corresponding to
the largest eigenvalues of the array correlation matrix. It
is advantageous to use the one with the smaller dimensions.

For the case of a single source, the DOA estimate
made by the MUSIC method asymptotically approaches the
CRLB, that is, when the number of snapshots increases
infinitely, the best possible estimate is made. For the
multiple sources, the same holds for the large SNR cases,
that is, when the SNR approaches infinity [333], [334]. The
CRLB gives the theoretically lowest value of the covariance
of an unbiased estimator.

An application of the MUSIC algorithm to cellular mo-
bile communications is investigated to locate land mobiles
and shows that when multipath arrivals are grouped in
clusters, the algorithm is able to locate the mean of each
cluster arriving at a mobile [335]. This information then
may be used to locate the line of sight. Its use for mobile
satellite communications has been suggested in [59].

2) Root-MUSIC: For a ULA, the search for DOA can be
made by finding the roots of a polynomial. In this case, the
method is known as root-MUSIC [332]. Thus, root-MUSIC

is applicable when a ULA is used. It solves a polyno-
mial rooting problem in contrast to the identification and
localization of spectral peaks using spectral MUSIC. Root-
MUSIC has a better performance than spectral MUSIC
[336].

3) Constrained MUSIC: This incorporates the knowledge
of the known source to improve the estimates of the
unknown source direction [331]. The situation arises when
some of the source directions are already known. This
method removes the components of the signal induced by
these known sources from the data matrix and then uses the
modified data matrix for DOA estimation. It is achieved
by projecting the data matrix onto a space-orthogonal
complement to a space spanned by the steering vectors
associated with known source directions. It is a matrix
operation. The process reduces the dimension of the signal
subspace by a number equal to the known sources and
improves the quality of the estimate, particularly when the
known sources are strong or correlated with the unknown
sources.

4) Beam-Space MUSIC: The MUSIC algorithms de-
scribed above process the snapshots received from sensor
elements without any preprocessing, such as to form beams,
and thus may be thought of as element-space algorithms.
This is contrary to a beam-space MUSIC algorithm, where
the array data are passed through a beam-forming processor
before applying MUSIC or any other DOA estimation
algorithm. The output of the beam-forming processor may
be thought of as a set of beams, and thus the processing
using these data is normally referred to as beam-space
processing. A number of DOA estimation schemes are
discussed in [337] and [338], where data are obtained by
forming multiple beams using an array.

DOA estimation in beam space has a number of advan-
tages, such as reduced computation, improved resolution,
reduced sensitivity to system errors, reduced resolution
threshold, reduced bias in the estimate, and so on [333],
[339]–[342]. These advantages arise from the fact that a
beam former is used to form a number of beams that are
less than the number of elements in the array, and thus one
needs to process less data for DOA estimation.

One may think of this process in terms of the degrees
of freedom of the array. The element-space methods have
degrees of freedom equal to the number of elements in
the array, whereas the degrees of freedom of beam-space
methods equal the number of beams formed by the beam-
forming filter. Thus, the process reduces the degrees of
freedom of the array. Normally, one needs only
degrees of freedom to resolve sources.

The root-MUSIC algorithm discussed for the element-
space case may also be applied to this case, giving rise to
beam-space root-MUSIC [341], [342]. It enjoys the compu-
tational savings offered by beam-space methods compared
to element-space methods in general.

H. Min-Norm Method

The min-norm method [314], [343] is applicable for ULA
and finds the DOA estimate by searching for the location
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of peaks in the spectrum [344]

(164)

by calculating an array weight , which is of minimum
norm, has its first element equal to unity, and is contained in
the noise subspace. The solution of the above problem leads
to the following expression for the spectrum [344]–[346]

(165)

with the vector denoting all zeros except the first
element, which is equal to unity. As the method is appli-
cable for ULA, the optimization problem to solve for the
array weight may be transformed to a polynomial rooting
problem, leading to a root-min-norm method similar to
root-MUSIC. A comparison of the performance of the two
[347] indicates that the variance in the estimate obtained by
root-MUSIC is smaller than or equal to that of the root-min-
norm method. Schemes to speed up the DOA estimation
algorithm of min-norm and to reduce computations are
discussed in [344] and [348].

I. CLOSEST Method

This method is useful for locating sources in a selected
sector. Contrary to beam-space methods, which work by
first forming beams in selected directions, it operates in
the element space and in that sense is an alternative to
beam-space MUSIC. In a way, it is a generalization of the
min-norm method. It searches for array weights in the noise
subspace that are close to the steering vectors corresponding
to the DOA’s in the sector under consideration; thus the
name “CLOSEST” method. Depending upon the definition
of the closeness, it leads to various schemes. A method
referred to as FINE selects an array weight vector by
minimizing the angle between the selected vector and the
subspace spanned by the steering vectors corresponding
to the DOA’s in the selected sector. In short, the method
replaces the vector used in the min-norm method with
a suitable vector depending upon the definition of the
closeness used. More details about the selection of these
vectors and the relative merits of the CLOSEST method
are provided in [349].

A number of eigenstructure methods reported in the
literature exploit specialized array structures or noise sce-
narios. Two methods using uniform circular arrays are
presented in [350] that extend beam-space MUSIC and
ESPRIT algorithms (to be discussed in Section IV-J) for
two-dimensional angle estimation, including an analysis of
MUSIC to resolve two sources in the presence of gain,
phase, and location errors. Properties of the array have also
been exploited in [351] to find the azimuth and the elevation
of a directional source. Two DOA estimation schemes in
an unknown noise field using two separate arrays proposed
in [352] appear to offer a superior performance compared
to their conventional counterparts.

Advantages of minimum redundancy linear arrays are
discussed in [341]. It has been shown that by using such

arrays, one may be able to resolve more than
sources using elements. The other direction-finding

methods applicable to an unknown noise field are described
in [325] and [353]–[356]. The MAP method presented
in [354] and [355] is based on Bayesian analysis, and
estimated results are not asystematically consistent, that
is, the results may be biased [352]. The method in [356],
referred to as CANAL, may be implemented using analog
hardware, thus eliminating the need for sampling, data
storage, and so on. A DOA estimation method in the
presence of correlated arrivals using an array of unrestricted
geometry is discussed in [357].

J. ESPRIT

ESPRIT [358] is a computationally efficient and robust
method of DOA estimation. It uses two identical arrays
in the sense that array elements need to form matched
pairs with an identical displacement vector, that is, the
second element of each pair ought to be displaced by the
same distance and in the same direction relative to the first
element.

This, however, does not mean that one has to have
two separate arrays. The array geometry should be such
that the elements could be selected to have this property.
For example, a ULA of four identical elements with an
interelement spacing may be thought of as two arrays
of three matched pairs, one with the first three elements
and one with the last three elements such that the first
and second elements form one pair, the second and third
elements form another pair, and so on. The two arrays are
displaced by the distance. The way that ESPRIT [358]
exploits this subarray structure for DOA estimation is now
briefly described.

Let the signals induced on theth pair due to a narrow-
band source in direction be denoted by and .
The phase difference between these two signals depends
upon the time taken by the plane wave arriving from
the source under consideration to travel from one element
to the other. As the two elements are separated by the
displacement , it follows that

(166)

where is measured in wavelengths. Note that is
the magnitude of the displacement vector. This vector sets
the reference direction, and all angles are measured with
reference to this vector. Let the array signals received by the
two arrays be denoted by and . These are given by

(167)

and

(168)

where is a by matrix, with its columns denoting the
steering vectors corresponding to directional sources

associated with the first subarray;is an by diagonal
matrix, with its th diagonal element given by

(169)
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denotes source signals induced on a reference
element; and and , respectively, denote the noise
induced on the elements of the two subarrays. Comparing
the equations for and , it follows that the steering
vectors corresponding to directional sources associated
with the second subarray are given by .

Let and denote two by matrixes with
their columns denoting the eigenvectors corresponding
to the largest eigenvalues of the two array correlation
matrixes and , respectively. As these two sets of
eigenvectors span the same-dimensional signal space, it
follows that these two matrixes and are related by a
unique nonsingular transformation matrix, that is

(170)

Similarly, these matrixes are related to steering vector
matrixes and by another unique nonsingular trans-
formation matrix , as the same signal subspace is spanned
by these steering vectors. Thus

(171)

and

(172)

Substituting for and and the fact that is of full
rank, one obtains

(173)

which states that the eigenvalues of are equal to the
diagonal elements of and that the columns of are
eigenvectors of . This is the main relationship in the devel-
opment of ESPRIT [358]. It requires an estimate offrom
the measurement and . An eigendecomposition of

gives its eigenvalues, and by equating them toleads
to the DOA estimates

Arg
(174)

How one obtains an estimate of from the array signal
measurements efficiently has led to many versions of ES-
PRIT [358]–[363]. One version, refered to as TLS ESPRIT
[358], [359], is summarized below.

1) Make measurements from two identical subarrays,
which are displaced by . Estimate the two array
correlation matrixes from the measurements and find
their eigenvalues and eigenvectors.

2) Find the number of directional sources using
available methods (some are described later in this
section).

3) Form the two matrixes with their columns being the
eigenvectors associated with the largest eigenval-

ues of each correlation matrix. Let these be denoted
by and . For a ULA, this could be done by
first forming an by matrix by selecting its
columns as the eigenvectors associated with the
largest eigenvalues of the estimated array correlation

matrix of the full array of elements. Then select
the first rows of to form and the last
of its rows to form .

4) Form a by matrix

(175)

and find its eigenvectors. Let these eigenvectors be
the columns of a matrix .

5) Partition into by matrixes as

(176)

6) Calculate the eigenvalues of the
matrix

7) Estimate the angle of arrival using

Arg
(177)

Other ESPRIT variations include beam-space ESPRIT
[359], beam-space ESPRIT for uniform rectangular array
[364], resolution-enhanced ESPRIT [360], virtual interpo-
lated array ESPRIT [362], multiple invariance ESPRIT
[365], higher order ESPRIT [366], and procrustes rotation-
based ESPRIT [367].

Use of ESPRIT for DOA estimation using an array at a
base station in the reverse link of a mobile communications
system has been studied in [368].

K. WSF Method

The WSF method [369], [370] is a unified approach to
schemes like MLM, MUSIC, and ESPRIT. It requires
knowledge of the number of directional sources. The
method finds the DOA such that the weighted version of a
matrix whose columns are the steering vectors associated
with these directions is close to a data-dependent matrix.
The data-dependent matrix could be a Hermitian square
root of the array correlation matrix or a matrix whose
columns are the eigenvectors associated with the largest
eigenvalues of the array correlation matrix. The framework
proposed in the method can be used for deriving common
numerical algorithms for various eigenstructure methods
as well as for their performance studies. Its application for
mobile communications employing an array at the base
station has been investigated in [58] and [371].

L. Other Methods

A number of methods that do not require eigenvalue
decomposition are discussed in [372]–[379].

The method proposed in [372] is applicable for a linear
array of elements. It forms a by correlation matrix
from one snapshot with , and is based on the
orthonormal decomposition [380] on this correlation matrix,
with being a by unitary matrix and being an
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upper triangle. The last – column of defines a set
of orthonormal basis for the noise space. Denoting these
columns by , the directions of sources are obtained from
the peaks of the spectra

(178)

This method is computationally efficient, and its perfor-
mance is comparable to that of MUSIC [372]. A multiple-
source location method based on a matrix decomposition
approach is presented in [373]. The method requires knowl-
edge of the noise power estimate and is applicable for
coherent as well as noncoherent arrivals. It does not require
knowledge of the number of sources.

The method discussed in [374] exploits the cyclostation-
arity [381] of data that may exist in certain situations.
This method has significant implementation advantages,
and its performance is comparable with the other methods.
Another method [375] that combines accuracy with a
low computation requirement using polynomial rooting
exploits diversity polarization of the arrays. These arrays
have the capability of separating signals based on the
polarization characteristics and thus have an advantage
over uniformly polarized arrays [382], [383]. An adaptive
scheme based on Kalman filtering to estimate the noise
subspace is presented in [377], which then is combined
with root-MUSIC to estimate DOA. The method has good
convergence characteristics. The method presented in [376]
uses a deconvolution approach to the output of a con-
ventional processor to a localized source, whereas those
discussed in [378] and [379] use a neural-network approach
to direction finding.

The discussion on DOA estimation thus far has
concentrated on estimating the directions of stationary
narrow-band sources. Though an extension of a narrow-
band direction-finding scheme to the broad-band case is
not trivial, some of the methods discussed here have been
extended to estimate the directions of broad-band sources.
A discussion of these and other schemes is contained
in [313] and [384]–[394]. The methods described in
[384]–[386], [389], and [393] are based upon a signal
subspace approach, whereas those discussed in [388],
[394] and [390], [395] are related to the ESPRIT method
and the ML method, respectively. The application of
high-resolution direction-finding methods to estimate the
directions of moving sources and to track these sources
may be found in [396]–[400]. The problem of estimating
the mean DOA of spatially distributed sources such as
exist in base-mobile communications systems has been
examined in [401] and [402].

M. Preprocessing Techniques

A number of techniques are used to process data before
using direction-finding methods for DOA estimation, partic-
ularly in situations where directional sources are correlated
or coherent. Correlation of directional sources may exist

due to multipath propagation. It tends to reduce the rank
of the array correlation matrix. A correlation matrix may
be tested for source coherency by applying the rank profile
test described in [403]. Most preprocessing techniques try to
either restore this rank deficiency in the correlation matrix
or modify it to be useful for the DOA estimation methods.

One scheme, referred to as the spatial smoothing method,
has been widely studied in the literature [404]–[416] and is
applicable for a linear array. In its basic form, it decorrelates
the correlated arrival by subdividing the array into a number
of smaller overlapping subarrays and then averaging the
array correlation matrix obtained from each subarray. The
number of subarrays obtained from an array depends upon
the number of elements used in each subarray. For example,
using elements in each subarray, one may form
subarrays from an array of elements by forming the first
subarray using elements 1 to, the second subarray using
elements 2 to , and so on. The number and size of
the subarrays are determined from the number of directional
sources under consideration. For sources, one needs a
subarray size of and a number of subarrays greater
than or equal to [404].

Thus, to estimate the directions of sources, one re-
quires an array size of , which could be reduced to

by using improved spatial smoothing methods [405],
[407], also known as forward-backward spatial smoothing.
This process uses the average of correlation matrix obtained
from the forward subarray scheme described above, which
subdivides the array starting from one side of the array,
and the complex conjugate of the matrix obtained from the
backward subarray method, which is starting to subdivide
from the other side of the array. Theth subarray matrix

of the backward method is related to the forward
method matrix by

(179)

where is a reflection matrix, with all its elements along
the secondary diagonal equal to unity and elsewhere equal
to zero. The process is similar to that used by forward-
backward prediction for bearing estimation [408].

An improved spatial smoothing method [410] uses cor-
relation between all elements of the array rather than
correlation between elements of subarrays, as is normally
done to improve the performance of the spatial smoothing
method. The method described in [409] and [411] removes
the effects of sensor noise to make spatial smoothing
more effective in low-SNR situations. This spatial filtering
method is further refined in [417] to offer DOA estimates
of coherent sources with reduced RMS errors.

A decorrelation analysis of spatial smoothing [412]
shows that there exists an upper bound on the number
of subarrays and that the maximum distance between the
subarrays depends upon the fractional bandwidth of the
signals. A comprehensive analysis [413] of the use of
spatial smoothing as a preprocessing technique to weighted
ESPRIT and MUSIC methods of DOA estimation shows
how their performance could be improved by the proper
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choice of the number of subarrays and weighting matrixes.
An application of ESPRIT to estimate source directions
and polarization shows the improvement in its performance
in the presence of coherent arrivals when it is combined
with the spatial smoothing method [418].

The spatial smoothing methods using subarray arrange-
ments reduce the effective aperture of the array as well
as the degree of freedom, and thus one needs a higher
number of elements to process correlated arrivals than
otherwise required. The schemes that do not reduce the
effective size of the array include those that restore the
structure of the array correlation matrix for a linear array
to that when there is no correlation. These are referred to
as structured methods [419], [420]. For a linear equispaced
array, the correlation matrix in the absence of correlated
arrivals has a Toeplitz structure, that is, the elements of
the matrix along its diagonals are equal. The correlation
between sources destroys this structure. In [419], this is
restored by averaging the matrix obtained in the presence of
correlated arrivals by simple averaging along the diagonals,
while in [420], a weighted average is used. A method using
the array correlation matrix structured by averaging along
its diagonals of DOA estimation discussed in [421] appears
to offer computational advantages over similar methods.

Some other preprocessing schemes to decorrelate the
correlated sources include random permutation [414], me-
chanical movement using a circular disk [422], construction
of a preprocessing matrix using approximate knowledge
of a DOA estimate [423], signal subspace transformation
in the spatial domain [424], unitary transformation method
[425], and methods based on aperture interpolations [415],
[426], [427].

N. Estimating the Number of Sources

Many of the high-resolution direction-finding methods
require the number of directional sources, and their per-
formance is dependent on the perfect knowledge of these
numbers. Some methods for estimating the number of these
sources are discussed here.

The method most commonly referred to for detecting
the number of sources was first introduced in [428] based
on AIC [429] and Rissanen’s MDL [430] principle. The
method was further analyzed in [431] and [432] and mod-
ified in [433] and [434]. A variation of the method that is
applicable to coherent sources is discussed in [325], [435],
and [436]. Briefly, the method works as follows [428],
[432].

1) Estimate the array correlation matrix from inde-
pendent and identically distributed samples.

2) Find the eigenvalues of the correlation
matrix such that

3) Estimate the number of sources by solving

minimize

(180)

where

(181)

(182)

and the penalty function

for AIC
for MDL

(183)
with denoting the number of elements in the array.

A modification of the method based on the MDL prin-
ciple applicable to coherent sources is discussed in [435]
and is further refined in [325] and [436] to improve the
performance. A parametric method that does not require
knowledge of the eigenvalues of the array correlation matrix
is discussed in [437]. It has a better performance than some
of the other methods discussed and is computationally more
complex.

All methods that partition the eigenvalues of the array
correlation matrix rely on the fact that the eigenvalues
corresponding to directional sources are larger than the
rest of the – eigenvalues corresponding to the back-
ground noise and select the threshold differently. One of the
earliest methods [438] used a hypothesis-testing procedure
based upon the confidence interval of noise eigenvalues,
and the assignment of the threshold was subjective. A
method referred to as an eigenthreshold method [439] uses
a one-step prediction of the threshold for differentiating the
smallest eigenvalues from the others. The method has a
better performance than AIC and MDL. It has a threshold
at a lower value of SNR than that of MDL and has a lower
error rate than that of AIC at high SNR [439].

An alternate scheme for estimating the number of sources
present uses the eigenvectors of the array correlation matrix,
unlike other methods, which use the eigenvalues, and
is discussed in [440]. The method is referred to as the
eigenvector detection technique. It is applicable to a cluster
of sources whose approximate directions are known and
is able to estimate the number of sources at a lower SNR
than that of AIC and MDL.

In practice, the number of sources an array may be able
to resolve depends not only on the number of elements in
the array but also on the array geometry, available number
of snapshots, and spatial distribution of sources. Discussion
on these and other issues related to the capabilities of an
array uniquely to resolve a number of sources may be found
in [441]–[443] and the references therein.

O. Performance Comparison

Performance analysis of direction-finding schemes has
been carried out by many researchers [317], [336], [339],
[340], [444]–[462]. The performance measures considered
for analysis include bias, variance, resolution, CRLB, and
probability of resolution. Among the most studied [339],
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[340], [444]–[454] direction-finding schemes is MUSIC.
Most of these studies concentrate on performance and
performance comparison with other methods when a finite
number of samples are used for direction finding rather
than their ensemble average.

An asymptotic analysis of MUSIC with for-
ward/backward spatial smoothing in the presence of
correlated arrival shows [444] that to estimate two angles
of arrival of equal power under identical conditions
requires more snapshots for correlated sources than for
uncorrelated sources [454]. A rigorous bias analysis of
MUSIC shows [447] that estimates are biased. For a linear
array in the presence of a single source, the bias increases
as the source moves away from broadside. Interestingly,
the bias also increases as the number of elements in the
array are increased, keeping the aperture fixed.

Bias and STD are complicated functions of the array
geometry, SNR, and number and directions of sources,
and vary in a way inversely proportional to the number
of snapshots. A poorer estimate generally results, using a
lesser number of snapshots and sources with lower SNR.
It is shown in [340] and [447] that the performance of
conventional MUSIC is poor in the presence of correlated
arrivals and fails to resolve coherent sources. Even though
bias and STD both play important roles in direction estima-
tion, the effect of bias near the threshold region is critical.
A comparison of the performance of MUSIC with those of
min-norm and FINE for a finite sample case [448] shows
that in the low-SNR range, the min-norm estimates have the
largest STD, and the MUSIC estimates have the largest bias.
As these results are dependent on the SNR of the source,
the performance of all three approaches the same limit as
the SNR is increased. The overall performance of FINE
is better than the other two in the absence of correlated
arrivals.

The estimates obtained by the MUSIC and ML methods
are compared with CRLB in [445] and [446] for a large
sample case. The CRLB gives the theoretically lowest value
of the covariance of an unbiased estimator. It decreases with
the number of samples, number of sensors in the array,
and SNR’s of the sources [445]. The study concludes that
the MUSIC estimates are the large sample realization of
the ML estimates in the presence of uncorrelated arrivals.
Furthermore, it shows that the variance of the MUSIC
estimate is more than that of the ML estimate, and the
two approach each other as the number of elements and the
number of snapshots increases. Thus, using an array with a
large number of elements and a large number of samples,
one is able to make excellent estimates of directions of
uncorrelated sources with large SNR using the MUSIC
method [445]. It should be noted that the estimates of the
ML method are unbiased [460]. An unbiased estimate is
referred to as a consistent estimate.

An improvement in the MUSIC DOA estimation is possi-
ble by using beam-space MUSIC [339], [340]. By properly
selecting a beam-forming matrix and then using the MUSIC
scheme to estimate DOA, one is able to reduce the threshold
level of the required SNR to resolve the closely spaced

sources [339]. Though the variance of this estimate is not
much different from the element-space case, it has less bias
[340]. The resolution threshold of beam-space MUSIC is
lower than that of the conventional min-norm method. For
two closely spaced sources, however, beam-space MUSIC
and beam-space min-norm provide identical performances
when suitable beam-forming matrixes are selected [339].

It is shown in [453] that when beam-forming weights
have conjugate symmetry (useful only for arrays with par-
ticular symmetry), beam-space MUSIC has a decorrelation
property similar to backward/forward smoothing. Thus, it
is useful for correlated arrival-source estimation and offers
performance advantages in terms of lower variance for the
estimated angle.

The resolution property of MUSIC is further analyzed
in [449]–[452] and [454], which show how it depends
upon the SNR, number of snapshots, array geometry, and
separation angle of the two sources. Analytical expressions
of probability of resolution and its variation as a function
of various parameters [452] could enable one to predict the
behavior of the MUSIC estimate for a given scenario. The
two closely spaced sources are said to be resolved when
two peaks appear in the spectrum in the vicinity of the
source directions.

A comparison of the performances of MUSIC and other
eigenvector methods, which use the noise eigenvectors
divided by the corresponding eigenvalues for DOA esti-
mation, indicates [317] that the performance of the former
is more sensitive to the choice of an assumed number of
sources compared to the actual number of sources.

A performance analysis of many versions of ESPRIT is
considered in [336] and [456]–[458] and compared with
other methods. Estimates obtained by subspace rotation
methods, which include TAM and ESPRIT, have larger
variance than those obtained by MUSIC using a large
number of samples [456]. Estimates by ESPRIT using a
uniform circular array are asymptotically unbiased [458].
LS-ESPRIT and TAM estimates are statistically equivalent.
LS-ESPRIT and TLS-ESPRIT have the same MSE [336].
Their performance depends upon how the subarrays are
selected [457]. The min-norm method is equivalent to
TLS-ESPRIT [463], and root-MUSIC outperforms ESPRIT
[464]. TAM is based on the state-space model and finds a
DOA estimate from signal subspace. In spirit, its approach
is similar to ESPRIT [336]. For Gaussian signals, the WSF
method and ML method are efficient, as both attain CRLB
asymptotically [455], [459]. A method is said to be efficient
when it achieves CRLB.

The correlation between the sources affects the capabili-
ties of various DOA estimation algorithms differently [465].
A study [461] of the effect of the correlation between two
sources on the accuracy of DOA-finding schemes shows
that the phase of the correlation is more significant than the
correlation magnitude. Most of the performance analysis
discussed so far assumes that the background noise is white.
When this is not the case, the DOA schemes perform
differently. In the presence of colored background noise,
the performance of MUSIC is better than that of ESPRIT
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and the min-norm method over a wide range of SNR. The
performance of the min-norm method is worse than those
of the other two [466].

P. Sensitivity Analysis

A sensitivity analysis of MUSIC to various perturbations
is presented in [467]–[472]. A compact expression for the
error covariance of the MUSIC estimates given in [467]
may be used to evaluate the effect of various perturba-
tion parameters, including gain and phase errors, effect of
mutual coupling channel errors, and random perturbation
in sensor locations. It should be noted that the MUSIC
estimate of DOA requires knowledge of the number of
sources similar to some other methods, and underestimation
of source number may lead to an inaccurate estimate of
DOA’s [468]. A variance expression for a DOA estimate
for this case has been provided in [468].

An analysis of the effect of model errors on the MUSIC
resolution threshold [333], [470] and on the waveforms
estimated using MUSIC [469] indicates that the probability
of resolution decreases [470] with the error variance and
that the sensitivity to phase errors depends more upon array
aperture than on the number of elements [469] in a linear
array. The effect of gain and phase error on the MSE of the
MUSIC estimate of a general array is analyzed in [473].
The problem of estimating gain and phase errors of sensors
whose locations are known is considered in [471].

An analysis [472] of ESPRIT under random sensor
uncertainties suggests that the MUSIC estimates generally
give lower MSE than ESPRIT. The former is more sensitive
to both sensor gain and phase errors, whereas the latter
depends only on phase errors. The study further suggests
that for a linear array with a large number of elements, the
MSE of the ESPRIT estimate with maximum overlapping
subarrays is lower than that with nonoverlapping subarrays.

The effect of gain and phase errors on weighted
eigenspace methods, including MUSIC, min-norm, FINE,
and CLOSEST, is studied in [474] by deriving bias and
variance expressions. It indicates that the effect is gradual
up to a point, and then the increase in error magnitude
causes an abrupt deterioration in the bias and variance of
the estimate. The weighted methods differ from the standard
ones such that a weighting matrix is used in the estimate,
and that matrix could be optimized to improve the quality
of the estimate under particular perturbation conditions.

The effect of nonlinearity in the system, such as the
hard clipping common in digital beam formers, on spectral
estimation methods in general is analyzed in [475], which
shows that such distortion may be eliminated by additional
preprocessing.

The effect of various perturbation methods on spectral
estimation methods emphasizes the importance of a precise
knowledge of various array parameters. There are various
techniques to calibrate arrays, some of which are discussed
in [476] and [477] and the references therein. There are
schemes such as that discussed in [478] to estimate the
steering vector and, in turn, the DOA from uncalibrated
arrays and in [479] to estimate DOA. Discussions on

Table 1 Performance Summary of Bartlett Method

Table 2 Performance Summary of MVDR Method

Table 3 Performance Summary of MEM

robustness issues of direction-finding algorithms may be
found in [480] and [481].

A summary of the performance and sensitivity compar-
ison of various DOA estimation schemes is provided in
Tables 1–12.

V. EFFECT OF ERRORS

The communications system using an array of antenna
elements considered so far is assumed to be free from
errors and perturbations, and the results on various beam-
forming schemes, adaptive algorithms, and DOA methods
are based upon ideal error-free conditions. In real systems,
these idealistic situations are hardly met, and the system
performance is affected by the amount that the various
system parameters deviate from the assumed conditions.
Some of these deviations are discussed in this section.

A. Correlated Arrivals

The interference-canceling capabilities of the optimal
beam formers discussed earlier assume that the signal and
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Table 4 Performance Summary of Linear Prediction Method

Table 5 Performance Summary of MLM

interference are uncorrelated. The correlation between the
desired signal and an unwanted interference exists in situa-
tions of multipath arrivals and deliberate jamming. It affects
the performance of the beam former, as discussed in [52],
[419], [420], and [483]–[495], and limits the applicability
of various weight estimation schemes. For example, when
the weights are estimated by minimizing the mean output
power subject to look-direction constraint, the beam former
cancels the desired signal while maintaining the constraint.
The reason this happens is that while minimizing the mean
output power, the beam former adjusts the phase of the
correlated interference induced on each antenna such that
the power of the sum of the signal and the interference,
which is correlated with the signal, is minimized, causing
the signal cancellation. This is consistent with the design
that the beam former minimizes the output power. The

Table 6 Performance Summary of
Element-Space MUSIC Method

Table 7 Performance Summary of Beam-Space MUSIC Method

design of the optimal weights is based upon the assumption
that the signal is not correlated with the interferences.

The correlation between two broad-band signals
and is defined in terms of their power spectrum

[496]

(184)
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Table 8 Performance Summary of Root-MUSIC Method

Table 9 Performance Summary of Min-Norm Method

Table 10 Performance Summary of CLOSEST Method

with denoting the cross-power spectrum. It is
related to the cross-correlation function

(185)

by the Fourier transform

(186)

Thus, the correlation between the signal and an inter-
ference, hereafter denoted as, is a complex scalar with
magnitude and lies within the unit circuit.
When the magnitude is equal to one, the two sources are
said to be coherent.

The correlation between two sources affects the rank
of the correlation matrix, causing it to become singular.

Table 11 Performance Summary of ESPRIT Method

Table 12 Performance Summary of FINE Method

Rewriting the correlation matrix for the case of two corre-
lated directional sources as

(187)

with the source correlation matrix given by

(188)

shows how the correlation between the two sources affects
. It follows from these expressions that when two sources

are uncorrelated—that is, — is a diagonal matrix
guaranteeing to be positive definite (assuming is of
full rank, which requires that steering vectors corresponding
to all directional sources are linearly independent [35]).
The presence of correlation affects the rank ofand
thus of . In the presence of correlation, the matrix
becomes ill conditioned and may not be invertible, making
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it difficult to estimate the weights of the optimal beam
former, which relies on the existence of the inverse of

. Thus, a beam-forming scheme that is optimal in the
absence of a correlated arrival is not able to cancel a
correlated interference. Many beam-forming schemes have
been devised to cancel an interference source, which is
correlated with the signal. In principle, these work by
restoring the rank of .

In some earlier work [52], [497], a mechanical move-
ment of the array perpendicular to the look direction was
suggested to reduce the signal-cancellation effect by the
correlated interference. The scheme generally known as
a spatial dither algorithm works on the principle that as
the movement is perpendicular to the look direction, the
signal induced in the array is not affected, whereas the
interference that arrives from a direction different than that
of the signal becomes modulated with this motion. This
causes a reduction in the interference as noted in [492],
where the dither algorithm is further developed such that a
mechanical movement is not required.

The spatial smoothing scheme [416], as discussed earlier,
uses the same idea of spatial averaging by subdividing
the array into smaller subarrays and estimates the array
correlation by averaging the correlation matrixes estimated
from each such subarray. The use of spatial smoothing for
beam forming is discussed in [484] and [487] and shows
that the use of this method reduces effective correlation
between the interference and the desired signal, resulting
in a reduction in signal cancellation caused by the optimal
beam forming.

The spatial smoothing method uses uniform averaging
of all the matrixes obtained from different subarrays, that
is, each matrix is weighted equally. This results in an
estimate of the matrix that is not as good as one could
have obtained from given subarray matrixes. Ideally, in
the absence of correlation, the array correlation matrix for
a uniformly spaced linear array has a Toeplitz structure,
that is, elements of the matrix along each diagonal are
equal, and the estimated matrix by the spatial smoothing
scheme is not the closest to the Toeplitz matrix. This is
done by a spatial averaging technique [420], [422], which
weighs each subarray matrix differently and then optimizes
the weights such that it minimizes the MSE between the
weighted matrix and a Toeplitz matrix. The system that
results from using this matrix to estimate the weights of
the beam former reduces more interference than that given
by the use of a uniform weighted matrix estimate.

It should be noted that the number of rows and columns
in the estimated matrix is equal to the number of elements in
the subarray and not equal to the number of elements in the
full array. Thus, the weights estimated by this matrix could
only be applied to one of the subarrays. Consequently, not
all elements of the array are used for beam forming. This
reduces the array aperture and its degree of freedom. For
an environment consisting of direction interferences, the
desired signal the size of the subarray should be at least

and the number of subarrays should be at least
[420].

A scheme that does not reduce the degree of freedom of
the array is described in [419]. It decorrelates the sources
by structuring the correlation matrix to be Toeplitz by
averaging along each diagonal and uses the resulting matrix
to estimate the weights of the full array. An adaptive
algorithm to estimate the weights of an array based upon
this principle is presented in [498], and the concept is
extended to broad-band beam forming in [499].

A beam-forming scheme [52] based upon master and
slave concepts cancels the correlated arrival by the use
of two channels. In one channel, the look-direction signal
is blocked, and then weights are estimated by solving the
constrained beam-forming problem. These weights are then
used on the second channel. As the signal is not present at
the time of weight estimation, the beam former does not
cancel the signal. However, the process only works for
one correlated interference. It is extended for a multiple
correlated interference case in [486] where an array of

elements is required to cancel interferences.
The other schemes that require some knowledge of the

interference, such as direction or the correlation matrix due
to interference only, can be found in [485], [489], [491],
[494], and [495].

Many of these schemes improve the array performance in
the presence of correlated arrivals by treating the correlated
components as interferences and canceling them by forming
nulls in their directions using beam-forming techniques.
These methods do not utilize the correlated components,
as is done in diversity combining (discussed previously),
where different components are added in some way to
improve the signal level. A receiver known as the RAKE
receiver [184], [500]–[502] achieves this increase in signal
level for a CDMA satellite system by using a number of
demodulators operating in parallel to track each component
using the user code for that signal. The delay in the signal is
identified by sliding the code sequence as required to obtain
the maximum correlation with the received component. The
signals are added at the baseband after appropriate delay
and amplitude scaling. The receiver, however, does not
cancel unwanted interferences by shaping the beam pattern.

B. Look Direction and Steering Vector Error

Knowledge of the look direction is used to constrain the
array response in the direction of the signal such that the
signal arriving from the look direction is passed through
the array processor undistorted. The array weights of the
optimal beam former are estimated by minimizing the
mean out power subject to the look-direction constraint.
The processor maximizes the output SNR by canceling
all the interferences. A direction source is treated as an
interference if it is not in the look direction. This shows the
importance of the accuracy of the knowledge of the look
direction. An error occurs when the look direction is not
the same as the desired signal direction. For this case, the
processor treats the desired signal source as an interference
and attenuates it. The amount of attenuation depends upon
the power of the signal and the amount of error [16], [42],
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[90], [503]. A stronger signal is canceled more and a larger
error causes more cancellation of the signal.

The solution to beam-pointing error is to make the
beam broader so that when the signal is not precisely in
the direction where it should be (the look direction), its
cancellation does not take place. The normal methods of
broadening the beams include multiple linear constraints
[16], [504] and norm constraints [121]. The latter con-
straints prohibit the main beam from blowing out, as is
the case in the presence of pointing error. In the process of
canceling a source close to the point constraint in the look
direction, the array response is increased in the direction
opposite to the pointing error. A scheme that does not
require broadening of the main beam to reduce the effect
of pointing error has been reported in [505]. It makes use
of direction-finding techniques combined with a reduced
dimensional ML formulation to estimate the direction of
the desired signal accurately. Effectiveness of the scheme
in mobile communications situations has been demonstrated
by computer simulations.

The study presented in [90] indicates that the beam-space
processors in general are more robust to pointing errors
than element-space errors. Some other schemes to remedy
pointing errors may be found in [506]–[508].

The knowledge of the look direction appears in the
weight calculation through the steering vector. The optimal
weight calculation for constrained beam forming requires
knowledge of the array correlation matrix and the steering
vector in the look direction. Thus, the pointing error causes
an error to occur in the steering vector, which is used for
weight calculation.

The steering vector may also be erroneous due to other
factors such as imperfection in the knowledge of the
position of array elements, errors caused by finite word
length arithmetic, and so on. The study of the effect of
steering vectors has been reported in [29], [507], and [509].
An analytical study performed by modeling the error as an
additive random error [29] indicates that the effect of error
is severe in the SPNMI processor, that is, when the array
correlation matrix, which is used to estimate the weights,
contains the signal.

As the signal power increases, the performance of the
processor deteriorates further due to errors. The sensitivity
of the processor to the steering vector may be decreased
by using a combination of the reference signal and steering
vector to estimate the weights [510].

C. Element Failure and Element Position Error

Uncertainty in the position of an element of an array
causes degradation in the array performance in general
[511]–[515], and more so when the array beam pattern
is determined by constrained beam forming. As discussed
previously, the element position uncertainty causes steering
vector error, leading to a lower array gain. The effect of
the position uncertainty on the beam pattern is to create a
background beam pattern similar to that of a single element
in addition to the normal pattern of the array [515]. A

general discussion of the effect of various errors on the
array pattern is provided in [516].

The position of the antenna elements of an array is
normally determined by a calibration process requiring
auxiliary sources in known locations [517], [518]. A pro-
cedure that does not require the location of these sources
is described in [508] and [519].

The element failure tends to cause an increase in side-
lobe level, and the weights estimated for the full array do
not remain optimal [513]. This requires recalculation of the
optimal weight with the knowledge of the failed elements
taken into account [513], [514].

D. Weight Errors

Array weights are calculated using ideal conditions,
stored in memory, and implemented using amplifiers and
phase shifters. A theoretical study of the performance of
the system assumes the ideal error-free weights, whereas
the actual performance of the system is dependent upon the
implemented weights. The amplitude as well as the phase
of these weights are different from the ideal ones, and
these differences arise from many types of errors caused at
various points in the system, including:

• deviation in assumption that a plane wave arrives at
the array;

• uncertainty in the positions and characteristics of the
elements of the array;

• error in the knowledge of the array correlation matrix
caused by its estimation from a finite sample and
arithmetic;

• error in the steering vector or the reference signal used
to calculate weights;

• computational error caused by finite-precision arith-
metic;

• quantization error in converting the analog weights into
digital form for storage;

• implementation error caused by component variation.

Studies of weight errors have been conducted by mod-
eling these errors as random fluctuations in weights [29],
[520]–[524] or by modeling them as errors in the amplitude
and phase [514], [525]–[529]. Performance indexes to mea-
sure the effect of errors include the array gain [29], [525],
reduction in null depth [520], reduction in interference
rejection capability [523], change in side-lobe level [514],
[526], [527], and bias in the angle of arrival estimation
[528].

The array gain is the ratio of the output SNR to the input
SNR. The effect of random weight fluctuation is to cause
a reduction in the array gain. The effect is sensitive to the
number of elements in the array and the array gain of the
error free system [29]. For an array with a large number
of elements and with a large error-free gain, a large weight
fluctuation could reduce its array gain to unity, implying
that output SNR becomes equal to input SNR and no array
gain is obtainable.
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The phase of the array weight is an important parameter,
and an error in the phase may cause an estimate of the
source to appear in a wrong direction when an array is
used for finding DOA (see, for example, [528]). The phase
control of signals is used to steer the main beam of the
array in desired positions, as in electronic steering. A device
normally used for this purpose is a phase shifter. Those
commonly available are ferrite phase shifters and diode
phase shifters [20], [530]. One of the specifications with
which an array designer is concerned is the RMS phase
error.

Analysis of the RMS phase error shows that it causes the
output SNR of the constrained optimal process to suppress
the desired signal, and the suppression is proportional to the
product of the signal power and the variance of the random
error [531]. Furthermore, the suppression is maximum in
the absence of directional interferences. An error that occurs
in digital phase shifters is quantization error. In a-bit
digital phase shifter, the minimum value of the phase that
can be changed equals . Assuming that the error is
distributed uniformly between to , the variance
of this error equals [531].

The effect of perturbation in the media, which causes
the wavefront to deviate from the plane wave propagation
assumption, and other related issues may be found in
[532]–[534]. The effect of a finite number of samples
used in weight estimation is considered in [535]–[537],
and how bandwidth affects the performance of a narrow-
band beam former is discussed in [74] and [538]. The
effect of amplitude and phase errors on a mobile satellite
communications system using a spherical array employing
digital beam forming is studied in [171].

E. Robust Beam Forming

The perturbation of many array parameters from their
ideal conditions under which the theoretical performance
of the system is predicted causes degradation in the sys-
tem performance by reducing the array gain and altering
the beam pattern. Various schemes have been proposed
to overcome these problems and to enhance the array
system performance under nonideal conditions [90], [121],
[539]–[546]. Many of these schemes impose various kinds
of constraints on the beam pattern to alleviate the problem
caused by parameter perturbation. A survey of robust signal
processing techniques in general is conducted in [547]. It
contains an excellent reference list and discusses various
issues concerning robustness.

VI. CONCLUSION

This paper has dealt with many facets of array signal
processing and beam forming. The emphasis has been on
presenting the results in a manner suitable for nonspecial-
ists.

This paper has introduced the concepts of beam form-
ing and has provided details of various beam-forming
schemes. Many of the available iterative schemes applicable
to adaptive beam forming have been described, along

with their convergence characteristics and computational
requirements.

A detailed treatment of various methods of estimating
the DOA’s has been provided by including the description,
limitation, and capability of each method and their perfor-
mance comparison as well as their sensitivity to parameter
perturbations.

This paper provides references to studies where array
beam-forming and DOA schemes are considered for mo-
bile communications systems. This aspect of array signal
processing was dealt with in Part I of this paper in much
more detail by describing how an array could be used for
mobile communications and how its use could improve the
performance of such systems as well as by discussing the
feasibility of an array system in a mobile communications
environment.
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